

77U Stahlbau: Dachverband

(Stand: 19.03.2015)

Das Programm dient zur Bemessung eines Dachverbandes entsprechend DIN EN 1993-1-1 (EC 3).

Leistungsumfang

Material

- Stahl nach DIN EN 1993, Tab. 3.1
- bzw. EN 10025-2, -3, -4, -5, -6, EN 10210-1, EN 10219-1 EN 10088-2, -3.

🕪 System

• Dachverband als Einfeldsystem.

Querschnitte

- I Querschnitte IPE ..., HEA...
- Stahl Hohlprofile: Rechteck, Quadrat, Stahlrohr
- U / L / Z / C / T Profile [alle Profile aus einer PBS-Datenbank oder Anwender-Datenbank (Prog. 30L)]
- Freie Eingabe von Rechteck und Rundquerschnitten, mit Optimierung
- Freie Eingabe von Hohlkasten -, I und Rohrquerschnitten, ohne Optimierung

Einwirkungen

- Streckeneinwirkungen qz (Gleichstreckenlast, Trapezlast, Dreieckslast) über das gesamte System
- Einzeleinwirkungen an beliebiger Stelle auf dem System (Einzelkräfte F_z)
- Optional: Automatische Generierung der Windlasten
- Optional: Automatische Generierung der Stabilisierungslasten
- Optional: Bildung von Lastfällen über die Einwirkungsgruppen
- Lastübernahme aus anderen Positionen und Lastweiterleitung

Schnittgrößen

- Theorie I. und II. Ordnung
- Einwirkungskombinationen nach EC 0 (DIN EN 1990) für folgende Bemessungssituationen:
 - Ständig und vorübergehend (P/T)
 - Außergewöhnlich (A)
- Grafische Darstellung und Druckausgabe der Schnittkräfte und Auflagerkräfte.

Nachweise Stahlbau nach EC3 (DIN EN 1993-1-1/NA:2010-12)

- Diagonalen:
 - Zugstabnachweis
- Pfosten:
 - Elastischer Spannungsnachweis
 - Plastische Querschnittsausnutzung
 - Schubbeulpr
 üfung (h/t Nachweis)
 - Stabilitätsnachweis nach dem Ersatzstabverfahren (Biegeknicken; Biegedrillknicken nur für doppelt symmetrische Querschnitte)

Allgemeines

Die Programmoberfläche

WICHTIGER HINWEIS:

Für die Handhabung der Programmoberfläche und für allgemeine Programmteile wie z.B. **Grunddaten / Ein**wirkungsgruppen / Lastübernahme / Quicklast / Ausgabe und Beenden steht

<HIER> eine gesonderte Beschreibung zur Verfügung.

Diese Beschreibung gilt sinngemäß für alle neuen Programme und wird Ihnen die Einarbeitung erleichtern.

Grunddaten

Neben dem Titel und einem Kommentar werden hier die Orts-Klimadaten erfasst, welche für die automatische Generierung der Wind- und Schneelasten erforderlich sind.

Dazu zählen z.B. die Geländehöhe über NN, die Schneelastzone, die Windlastzone usw. Auf Wunsch werden die wichtigsten Parameter, unter Angabe von Gemeinde oder PLZ, aus einer Datenbank ermittelt und zur manuellen Korrektur angeboten.

us nici, numinicillar			
Wind- und Schne	edate	en 🗌	ändem
Ortskenndaten			
Ort	-		Vellmar, Stadt
Gemeindeschlüssel	=		06633026
Höhe über NN	HNN =	201	m
Winddaten			
Windzone	=	1	
Windansatz	-		Regelfall
Windprofil	=		Binnenland
Basisgeschwindigkeit	vb =	22,50	m/s
Basisgeschwindigkeitsdruck	qb =	0,32	kN/m²
Schneedaten			
Schneezone	-	2	
Schneeansatz	=		Regelfall
Schneelast	sk =	0,85	kN/m²
Wichte Schnee	γ =	2,00	kN/m ³
Wichte Schneeüberhang	y.Se =	3,00	kN/m ³

System

Binder-, Rahmengeometrie

In diesem Abschnitt erfolgt die Eingabe der Dachgeometrie. Über die Eingaben der Binderlänge, Stielhöhen, Firstabstand und Dachneigungswinkel erfolgt die automatische Bestimmung der Dachform. Als Grundlinie der Rahmengeometrie ist der untere Abschluss der Windangriffsfläche definiert.

System Binder-, Rahmengeometrie Verbandsfeldaufteilung Rahmengeometrie Binderlänge 15.00 [m] Binderabstand 5.00 Im1 5,00 [m] Firstabstand Stielhöhe links 5,00 [m] Neigungswinkel links 10,00 [°] Firsthöhe 0.88 [m] Stielhöhe rechts 5,00 [m] 5.04 [*] Neigungswinkel rechts

Verbandfeldaufteilung

Hier erfolgt die Eingabe der Feldanzahl und Feldlängen getrennt nach links- und rechtsseitig vom First. Die Gesamtlänge des Verbandes ergibt sich aus der Abwicklung nach den Angaben der Rahmengeometrie.

Mit den Button ,+' und ,-' wird die Anzahl der Verbandfelder geändert. Die Feldlängen der einzelnen Felder können hier manuell angepasst werden.

Lastparameter

Gebäudegeometrie

Zur Nutzung der automatischen Windlastgenerierung werden hier die ergänzenden Geometrieangaben erfasst.

Stabilisierung

Die automatische Generierung der Stabilisierungslasten erfolgt auf Grundlage der Eingaben der Anzahl der zu stabilisierenden Binder, der Binderart und der Binderbeanspruchung. Werden

ebäudegeometrie Stabilisierung Beanspruchun	g Pfosten		
Allgemein	Binderart	Binderbeanspruchung	
Anzahl der zu stabilisierenden Binder 3 🜲	● Vollwandprofil Profilhöhe = 400 ♀ mm	Feldmoment max My,Ed =	357,0 kNm
	O Fachwerk	Normalkraft min Nx,Ed =	-52,0 kN
	Höhe links 500 🛊 mm	Durchbiegung des Verbands Delta q =	0,0 cm
	Höhe mitte 1000 🜩 mm	Berechnung nach Theorie 2. Ordnung	
	Höhe rechts 500 🗢 mm	Aquivalente stabilisierende Ersatzkräfte nach	DIN EN 1993-1-1 (5.13
		Lokale Ersatzkraft nach DIN EN 1993-1-1, Bil	d 5.7

für das Feldmoment und die Normalkraft keine Werte eingegeben, erfolgt keine automatische Lastgenerierung.

Beanspruchung Pfosten

Für den Nachweis der Pfosten können zusätzliche äußere Beanspruchungen eingegeben werden. Diese zusätzlichen Beanspruchungen werden in den Spannungs- und Stabilitätsnachweisen mit den Verbandbeanspruchungen überlagert. Eine Lastweiterleitung erfolgt nicht.

			<i>.</i>		
Gebäudegeometri	e Stabil	isierung	Beanspi	uchung	g Pfosten
Zusätzliche äuß	ere Bean:	spruchun	g für Pfos	ten	
Randpfosten					
y-Moment M	My,Ed =			4,92	kNm
z-Moment M	Mz,Ed =			0,87	kNm
Infotext		siehe Po	os. 2		
Feldpfosten					
y-Moment M	My,Ed =			9,85	kNm
z-Moment M	Mz,Ed =			1,74	kNm
Infotext		siehe Po	os. 3		
Firstpfosten					
y-Moment M	My,Ed =			5,00	kNm
z-Moment M	Mz,Ed =			0,00	kNm
Infotext		siehe Po	os. 4		

Einwirkungen

Es erfolgt generell die Eingabe charakteristischer Lasten. Aus diesen automatisch alle Kombinationen gebildet, die sich aus den verwendeten Kategorien ergeben können.

Optionen

Die Eingabeart legt zunächst fest, ob mit Einwirkungsgruppen (EWG) Lastfälle gebildet werden sollen.

Die Eingabe der Einwirkungen und die Zusammenstellung der Lastfälle können manuell erfolgen. Bei aktivierter automatischer Generierung werden Windlasten automatisch erzeugt. Zusätzlich können weitere Einwirkungen manuell eingegeben werden.

Optionen	Einwirkungsgruppen	Streckenlasten	Einzellasten	Kategorien	Lastfälle
Eingabe	aat G und LF verwenden manuelle Eingaben automatische Generieru 2] Wind tbilder ausgeben	Mir V ng V	drichtungen Wind von link Wind von reck Wind auf Gieb Wind auf Gieb	s (0°) hts (180°) bel (90°), Luv bel (90°), Lee	

Für die Windlasten nach DIN EN 1991-1-4 werden die zu betrachtenden Windrichtungen festgelegt. Standartmäßig werden

die Lasten für die Windrichtungen 0° und 180° mit angesetzt um eine einseitige Beanspruchung zu berücksichtigen.

Wird eine der Optionen für Wind- und Schneelasten aktiviert, so werden die in den Grunddaten eingegebenen Orts-Klimadaten zugrunde gelegt.

Für die Grafikanzeige kann gewählt werden, wie viele Lastbilder nebeneinander angezeigt werden sollen. Dies gilt sowohl zur Eingabekontrolle auf dem Bildschirm, als auch im späteren Ausdruck.

Einwirkungsgruppen

Zu Einwirkungsgruppen und Lastfällen siehe diese gesonderte Beschreibung. Dort wird auch die Lastübernah-

me aus anderen Positionen und die Quicklast - Funktion erläutert.

Streckenlasten

Mögliche Lasttypen für Streckenlasten:

qz = horizontal

Falls Lastfälle gebildet werden sollen, dann muss jede Eingabezeile einer Einwirkungsgruppe zugeordnet werden, siehe dazu die Programm-

Bezeichnung	Тур	Kat.	EWG	Ortsangabe	Anfang	Länge	Wert,k links	Wert,k rechts	Einheit	Alpha	Faktor
Stabilisierung 1	qz	Q,St	101	relativ	0,000	1,000	2,08	2,08	kN/m	-	1,00
Wind 90° (auto, Generierung)	qz	Q,W	136	relativ	0,000	0,333	1,25	1,48	kN/m		1,00
Wind 90° (auto, Generierung)	qz	Q.W	136	relativ	0,333	0,667	1,48	1,25	kN/m		1,00
Wind 0° (auto, Generierung)	qz	Q.W	135	relativ	0,000	0,157	1,42	1,54	kN/m	- E	1,00
Wind 0° (auto, Generierung)	qz	Q,W	135	relativ	0,157	0,177	1,03	1,12	kN/m		1,00
Wind 0° (auto. Generierung)	qz	Q,W	135	relativ	0,333	0,451	1,12	1,00	kN/m		1,00
Wind 0° (auto, Generierung)	qz	Q.W	135	relativ	0,784	0,216	0,63	0,59	kN/m	8	1,00
Wind 180° (auto. Generierung)	qz	Q.W	137	relativ	0,000	0,216	0,59	0,66	kN/m	- C	1,00
Wind 180° (auto: Generierung)	qz	Q,W	137	relativ	0,216	0,117	1,06	1,12	kN/m		1,00
Wind 180° (auto. Generierung)	qz	Q,W	137	relativ	0,333	0,510	1,12	0,99	kN/m	-	1,00
Wind 180° (auto. Generierung)	qz	Q.W	137	relativ	0.843	0.157	1.48	1.42	kN/m	-	1.00

punkte "Optionen" und "Einwirkungsgruppen".

Mit einem Doppelklick kann für die entsprechende Zeile eine Eingabehilfe aufgerufen werden:

		Lokale Streckenlast	in z-Richtung		
Typ QZ		Bezeichung:	Eigengewicht	2	
y, z		 Kategorie: EWG: 	G - Ständige E 001 - Alle Einw	inwirkungen ⁄irkungen	v v
Charakt	. Betrag	Lastort		Abminderung	3
	kN/m ♥	relativ [-]	~	<keine></keine>	v
	1,00	Beginn:	0,000	berechn	ien
inks:					

Die Lastlänge kann optional "relativ" eingegeben werden. Dabei sind "0" = Systemanfang und "1" = Systemende. Demzufolge ist "0,5" die Systemmitte.

Dies erspart dem Anwender das Ausrechnen der Koordinaten und sorgt für eine automatische Anpassung, wenn sich die Systemlänge ändern sollte.

Abminderungen:

Lastabminderungen (und Erhöhungen) sind über einen Faktor frei wählbar oder für Verkehrslasten aufgrund der Lasteinzugsfläche bzw. der Geschoßanzahl ermittelbar.

Einzellasten

Eir	wirkunge	n							4	zurück	weiter 🕨
Optione	n Einwirkungsgruppen	Streckenlasten	Einzellasten	Kategorien	Lastfälle						
14 4	1 von 1 🕨	이 제 기를 내를	× 🗅 🕻	Pos Catk							
	Bezeichnung		Ţ	yp Kat.	EWG	Ortsangabe	Ort	Wert,k	Einheit	Alpha	Faktor
	Stabilisierung 2		Fz	Q,St	102	relativ	0,336	27,56	kN	-	1,00

Mögliche Lasttypen für Einzellasten:

Fz = Einzellast horizontal

Kategorien

Einv	wirkunge	n		zurück	we	ter 🕨
Optionen	Einwirkungsgruppen	Streckenlasten	Einzellasten	Kategorien	Lastfä	ille
Kategorie Kat.	n für die Kombinato Beschreibung	rik		Ψo	Ψ1	Ψ2
Q,St	Stabilisierungslast			0,80	0,70	0,50
Q.W	Windlasten			0,60	0,20	0,00

Die bei der Lasteingabe verwendeten Last-Kategorien werden aufgelistet, so dass die Ψ - Werte bei Bedarf geändert werden können.

Lastfälle

Zu <u>Einwirkungsgruppen</u> und <u>Lastfällen</u> siehe <u>diese gesonderte Beschreibung</u>. Dort wird auch die <u>Lastübernah-</u> <u>me aus anderen Positionen</u> und die <u>Quicklast – Funktion</u> erläutert.

Aus den Einwirkungsgruppen können beliebige voneinander unabhängige Lastfälle (LF) gebildet werden.

Bei der Lastautomatik werden folgende Lastfälle automatisch generiert:

- alle Einwirkungen außer EWG 135 bis 137
- alle Einwirkungen und Wind 0° (EWG 135)
- alle Einwirkungen und Wind 90° (EWG 136)
- alle Einwirkungen und Wind 180° (EWG 137)

Einv	Nİ	rkungen				\land zurück	weiter 🕨
Optionen	nen Einwirkungsgruppen Streckenlasten Einzella		en Einzellasten	Kategorien	Lastfälle		
14 (4)	LF	1 von 4 🕨 🔰 🗖	🗄 🚛 🗙 I 🐚	1	auto. Tex	t	
	Nr	Beschreibung		EWG (G,inf)	EWG (G,sup)	
	1	Veränderliche Ew.1		101		101	
	2	Veränderliche Ew.1 + Wind 0	8	101,135		101,135	
	3	Veränderliche Ew.1 + Wind 9)°	101,136		101,136	
	4	Veränderliche Ew.1 + Wind 1	BO°	101,137		101,137	

Bemessung

Parameter

Bem	ess	ung					🖣 zurück	weiter	Þ
Parameter	Material	Querschnitt	1.						
Algemein			Bemessung	Querschnitt-Charakteristik	Anschlußoptionen Diagonalst	ibe für	Flachstahl, U-u	nd L-Profile	
Anzahi V	erbände	1.	Pfosten	Alle Pfosten gleich	Schraubanschluß				
			Diagonalen	✓ Alle Diagonalen gleich	Anzahl Schraubenreihen	nz =	1 🛊		
					Anzahl Schrauben	rox =	1 🗸		
					Bohrlochdurchmesser	d0 =	18,0		
					Lochabstand	p1=	50,0		
					Randabstand	e2 =	25,0		

Die Bemessungsparameter können, wie im Bild ersichtlich, eingestellt werden.

Material

Bemessung								weiter 🕨	
Parameter Material Querschnitt									
	Bau	ıteil	Kurzbez.	Bezeichnung	E-Modul [N/mm ²]	G-Modul [N/mm²]	Alpha [1/K]	Wichte [kN/m³]	
	Pfos	ten	S235	S235 (EN 10025-2)	210000	81000	1,2E-05	78,50	
	Diag	onalen	S235	S235 (EN 10025-2)	210000	81000	1,2E-05	78,50	

Im Programmpunkt Material kann dies geändert werden. Als Vorgabe ist Stahl S235 für Pfosten und Diagonalen eingestellt.

Es gibt die Auswahl zwischen verschiedenen Stahlsorten:

- Stahl nach DIN EN 1993, Tab. 3.1 bzw.
- EN 10025-2, -3, -4, -5, -6,
- EN 10210-1,
- EN 10219-1
- EN 10088-2, -3.

VEN 1993, Tabelle 3.1 Werk	cstoffnomen			
uswahl				
Suche:	S235 nach EN	1002	5-2	
F EN 10025-2	Wamgewalzte Erzeugn	isse aus E	austählen, Te	chnische
S235		negiene i	Jaustanie	
S275				
\$355.IR	Allgemein			
0.000011	Elastizitätsmodul	E =	210.000	N/mm ²
\$450	Schubmodul	G =	81.000	N/mm ²
EN 10025-3	Spez. Gewicht	γ =	78,50	kN/m ³
EN 10025-4	Querdehnzahl	μ=	0,30	
EN 10025 5	TempDehnzahl	α =	0,000012	1/K
F EN 10025-5	- Streckgrenze			
EN 10025-6	bis d ≤ 40 mm	fyk =	235	N/mm ²
EN 10210-1	bis d ≤ 80 mm	fyk =	215	N/mm ²
EN 10219-1	Zugfestigkeit			
	bis d ≤ 80 mm	fuk =	360	N/mm²

Querschnitt

Im Dialog "Querschnitt" erfolgt die Wahl eines Stabquerschnittes.

Bei	Bemessung										rück weiter 🕨
Paramet	er	Material	Querschnit	L I							
Alle I opti	Alle Bauteile optimieren		Ausnutzung optimier	g > 1.0 ren							
		Stabbe	zeichnung	Stabnr.	Max. Ausn.	Querschnittbezeichnung	Material	Anzahl	Winkel [°]	A [cm ²]	ly [cm4]
►.		Pfosten			0,774	IPE 220 (10°)	S235 (EN 10025-2)		10,00	33,37	2.771,86
		Diagona	alen		0,682	Kreis d = 16 mm	S235 (EN 10025-2)	1	0,00	2,01	0,32

Wurde in den Bemessungsparametern die Option "Alle Pfosten gleich" oder "Alle Diagonalen gleich" ausgewählt, dann erfolgt die Querschnittsauswahl einmal pro Bauteilgruppe.

Bei der differenzierten Eingabe der Querschnitte kann für jeden Pfosten und jedes Diagonalenpaar der Querschnitt gewählt werden.

Nach der Querschnittsauswahl wird die maximale Ausnutzung des Profils in jeder Zeile ausgegeben.

Mit der Funktion "Alle Bauteile optimieren" erfolgt die Optimierung, je nach Optionsauswahl, vom maximal beanspruchten Bauteil Pfosten und Diagonale oder von allen Pfosten und Diagonalenpaaren. Mit der Funktion "Ausnutzung > 1.0 optimieren" werden nur die Bauteile mit überschrittener Ausnutzung optimiert.

Schnittgrößen

Die Schnittgrößenberechnung mit automatisch anschließender Nachweisführung [im Weiteren: "Berechnung"] startet automatisch nach der Eingabe der Einwirkungen.

Kombinationen

Hier werden alle untersuchten Kombinatio-

nen für die Grenzzustände:

STR

Versagen oder übermäßige Verformung

des Tragwerks

Schni	ttgr	oessen			
Kombinationen	Schnittk	rräfte (design) Auflagerkräfte (de	esign)	Auflagerkräfte (charakt)	
KNr.	LF	Situation	Ko	mbination	Laststellung
STR - Versag	en oder	übermäßige Verformungen d	es Tra	gwerks	
1	1	Ständig und vorübergehend	d Gs	up + Q,St	max.Vollast
2	1	Ständig und vorübergehend	d Gir	nf + Q,St	max.Vollast
3	2	Ständig und vorübergehend	l Gs	up + Q,St	max.Vollast
4	2	Ständig und vorübergehend	d Gir	nf + Q,St	max.Vollast
5	2	Ständig und vorübergehend	d Gs	up + Q,St + (Q,W)	max.Vollast
6	2	Ständig und vorübergehend	Gir	nf + Q,St + (Q,W)	max.Vollast
7	2	Ständig und vorübergehend	d Gs	up + Q,W	max.Vollast
8	2	Ständig und vorübergehend	d Gir	nf + Q,W	max.Vollast
9	2	Ständig und vorübergehend	d Gs	up + Q,W + (Q,St)	max.Vollast
10	2	Ständig und vorübergehend	d Gir	nf + Q,W + (Q,St)	max.Vollast

Schnittkräfte (design)

Die extremalen Schnittkräfte der einzelnen Bauteile werden geordnet nach Bauteilgruppen ausgegeben.

Kombinationen	Schnittkräf	te (design)	Auflagerkräft	e (design)	Auflagerkräft	e (charakt)	
Gehe zu StabNi	r:	Spalten	+ Theorie I	I. Ordnung	9		
Stabname	StabNr	max.Nx [kN]	min.Nx [kN]	max.My [kNm]	min.My [kNm]	max.Mz [kNm]	min.Mz [kNm]
Diagonale 1.1	3	0,000	0,000	0,000	0,000	0,000	0,000
Diagonale 1.2	4	31,329	10,030	0,000	0,000	0,000	0,000
Diagonale 2.1	8	0,000	0,000	0,000	0,000	0,000	0,000
Diagonale 2.2	9	19,798	6,562	0,000	0,000	0,000	0,000
Diagonale 3.1	13	0,000	0,000	0,000	0,000	0,000	0,000
Diagonale 3.2	14	4,731	1,169	0,000	0,000	0,000	0,000
Diagonale 4.1	18	14,134	4,511	0,000	0,000	0,000	0,000
Diagonale 4.2	19	0,000	0,000	0,000	0,000	0,000	0,000
Diagonale 5.1	23	32,201	10,354	0,000	0,000	0,000	0,000
Diagonale 5.2	24	0,000	0,000	0,000	0,000	0,000	0,000
Pfosten 1	1	-10,087	-33,481	6,008	6,008	1,062	1,062
Pfosten 2	6	-9,030	-28,904	10,938	10,938	1,932	1,932

Auflagerkräfte (design) / Auflagerkräfte (charakteristisch)

Die Auflagerkräfte werden als Bemessungswerte (design) und Weiterleitungswerte (charakteristisch) angezeigt.

Kombinat	tionen Sch	nittkräfte (desig	n) Auflag	Auflagerkräfte (design) Auflagerkräfte (charakt)						
Gehe zu	Lager-Nr:									
									Internet of the second	
Lager	max.Ax [kN]	min.Ax [kN]	max.Ay [kN]	min.Ay [kN]	max.Az [kN]	min.Az [kN]	max.My [kNm]	[kNm]	[kNm]	[kNm]
Lager 1	max.Ax [kN] 0,000	min .Ax [kN] 0,000	max.Ay [kN]	min.Ay [kN]	max.Az [kN] 34,488	min.Az [kN] 10,319	max.My [kNm]	min.My [kNm]	max.Mz [kNm]	[kNm]

Kombinationen Sch		nittkräfte	(design)	Aufla	agerkräfte (o	Auflagerkräfte (charakt)		
Gehe zu Lager-Nr:			🗌 🔲 Extrema aller LF anzeiger				1	
Lager	LF	Kraft	Q	W,	Summe	0		
1	2	FY	8,	826	8,826			
3		FY	10,4	414	10,414			
	4		6,	879	6,879			
2	2	FY	6,	763	6,763			
	3	FY	10,3	220	10,220			
	4	FY	8,	662	8,662			

Optional können die Extremwerte (min / max) aller Lastfälle und Lastkategorien angezeigt werden.

Nachweise

Unter Nachweise / Ausnutzung werden alle geführten Nachweise mit ihrer jeweils maximalen Ausnutzung angezeigt. Die <u>insgesamt maximale Ausnutzung</u> wird immer rechts außen über der Tabelle angezeigt. Falls Nachweise überschritten sind (Ausnutzung > 1), dann können Sie die Schaltfläche "Nur Überschreitungen anzeigen" betätigen. Überschrittene Nachweise werden rot hervorgehoben.

Ausnutzung

Unter Nachweise / Ausnutzung werden alle geführten Nachweise mit ihrer jeweils maximalen Ausnutzung angezeigt. Die <u>insgesamt maximale Ausnutzung</u> wird immer rechts außen über der Tabelle angezeigt. Falls Nachweise überschritten sind (Ausnutzung > 1), dann können Sie die Schaltfläche "Nur Überschreitungen anzeigen" betätigen. Überschrittene Nachweise werden rot hervorgehoben.

Für die detaillierte Anzeige der Nachweiswerte klicken Sie auf

Nachweiswerte klicken Sie auf		C	nweise			4	zuruck weiter Ւ
	Ausnut	zung					
Details	- Detail	s	Nur Überschreitungen an:	eigen		🥝 max	. Ausnutzung = 0,774
Sie sehen die Details	Ort		Nachweis	KombNr.	Gleichung	Zwischenwerte / Details	Ausnutzung \land
		i				Nachweis: Querschnittsklasse 1	
auch in der Formularansicht und spa-	D4.1	0	N-Beanspruchung (pl)	17	6.5	Nachweis: 14.134 / 47.250	0,299
ter im Ausdruck, wenn unter "Ausga-	D5.1	1				Nachweis: Querschnittsklasse 1	
be" die Option "Nachweise / Zwi-		0	N-Beanspruchung (pl)	17	6.5	Nachweis: 32.201 / 47.250	0,682
schopworte" aktiviert wurde		i				Nachweis: Querschnittsklasse 1	
schenwerte aktiviert wurde.		0	Biegedrillknicken	17	6.61	Nachweis: 0.05 + 0.20 + 0.07	0,321
		0			6.62	Nachweis: 0.25 + 0.19 + 0.12	0,560
		0	M-Beanspruchung (pl)	1	6.41	Nachweis: 0.090^2.000 + 0.079^1.000	0,087
Reim Klicken auf die Anzeige max		1				Nachweis: Querschnittsklasse 1	
Augustaung "anzingt die Tabal		0	MN-Interaktion (pl)		6.41	Nachweis: 0.090^2.00 + 0.079^1.00	0,087
Ausnutzung = springt die Tabei-		(1)				Nachweis: Querschnittsklasse 1	
lenansicht in die entsprechende Zeile.		0	N-Beanspruchung (pl)	17	6.9	Nachweis: 33.481 / 784.212	0,043
		i				Nachweis: Querschnittsklasse 1	
		0	Schubbeulen	1	6.22	Nachweis: h/t = 30.00 < 60.00 in z-Richtung	0,500
		0			6.22	Nachweis: h/t = 4.35 < 60.00 in y-Richtung	0,073
	P2	0	Biegedrillknicken	17	6.61	Nachweis: 0.05 + 0.37 + 0.12	0,533
		0			6.62	Nachweis: 0.22 + 0.35 + 0.20	0,774
			M-Beanspruchung (pl)	1	6.41	Nachweis: 0.163^2.000 + 0.144^1.000	0.171 ¥

<u>Ausgabe</u>

Der Ausgabeumfang (Text und Grafik) kann individuell eingestellt werden.

In den allgemeinen Ausgabeoptionen kann die Anzeige der Stablängen in der Rahmengeometriegrafik eingeschaltet werden. In der Verbandgrafik können die Knotenanzeige und die Stabdetailanzeige (Stabnummern oder Stablängen) ein- oder ausgeblendet werden. Die Allgemeinen Optionen beziehen sich hier auf die Viewer-Anzeige und die Formularausgabe.

Für die Formularausgabe können noch generelle Ausgabeoptionen gesetzt werden.

Literatur

- [1] DIN EN 1990:2010-12 mit DIN EN 1990/NA:2010-12 [Grundlagen der Tragwerksplanung]
- [2] DIN EN 1991-1-1:2010-12 mit DIN EN 1991-1-1/NA:2010-12 [Lastannahmen]
- [3] DIN EN 1993-1-1:2010-12 mit DIN EN 1993-1-1/NA:2010-12 [Stahlbau]