76C Stahlbeton: Durchstanznachweis EC2

(Stand: 24.07.2013)

Das Programm führt Durchstanznachweise für Stahlbeton-Platten nach DIN EN 1992-1-1:2010-12 (EC 2).

Leistungsumfang

System

- Fundament mit Stütze oder Flachdecke mit beliebiger Anzahl von Stützen, Wandelementen und Öffnungen
- Optional mit intaraktiver grafischer Eingabe

Material

• Stahlbeton nach DIN EN 1992

Querschnitte

- Rechteck- / Kreis- oder Polygonplatten als Decken- bzw. Fundamentplatte
- Deckenplatten wahlweise mit Rechteck- / Kreis- oder Polygonöffnungen
- Deckenstützen wahlweise mit schrägen oder stufenförmigen Verstärkungen

Einwirkungen

- Fundament / Bodenplatte: Flächeneinwirkung (Bodenpressung)
- Deckenplatte: Einzel-, Linien- und Flächeneinwirkungen
- Optional mit Intaraktiver grafischer Eingabe
- Nachweise Stahlbeton nach EC2 (DIN EN 1992-1-1/NA: 2010-12)
 - Durchstanznachweis nach Sektormodell
 - Schnittführung wahlweise mit Fehlsektorverfahren
 - Durchstanznachweis für Stützbauteile
 - Durchstanznachweis für Einzellasten auf der Platte (für Deckensysteme)
 - Ermittlung der erforderlichen Durchstanzbewehrung
 - Mit interaktiver Grafik

Ausgaben

- Tabellarische Darstellung aller Ergebnisse am Bildschirm.
- Generierung eines Druck-Formulars mit allen Eingaben und Ergebnissen (inkl. Grafiken).
- Ausdruckumfang individuell einstellbar.

Normen

- DIN EN 1990:2010-12 mit DIN EN 1990/NA:2010-12 [Grundlagen der Tragwerksplanung]
- DIN EN 1991-1-1:2010-12 mit DIN EN 1991-1-1/NA:2010-12 [Lastannahmen]
- DIN EN 1992-1-1:2010-12 mit DIN EN 1993-1-1/NA:2010-12 [Stahlbeton]
- DIN 488-1:2009-08 [Betonstahl Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung]

Allgemeines

Die Programmoberfläche

WICHTIGER HINWEIS:

Für die Handhabung der neuen Programmoberfläche und für allgemeine Programmteile wie z.B. Grunddaten / Einwirkungsgruppen / Lastübernahme / Quicklast / Ausgabe und Beenden steht

<HIER> eine gesonderte Beschreibung zur Verfügung.

Diese Beschreibung gilt sinngemäß für alle neuen Programme und wird Ihnen die Einarbeitung erleichtern.

<u>Grunddaten</u>

Programmoptionen

Der Durchstanznachweis kann für Deckenplatten und Fundamentplatten nach dem Sektorenmodell erbracht werden. Deckenplatten können Öffnungen haben.

Einzellasten auf Deckenplatten können optional nachgewiesen werden (ohne Sektormodell).

PosTitel, Kommentar	Programmoptionen	
Durchstanzbauteil	Sektomodell	Bemessung / Nachweise
 Decke Fundament mit Öffnungen 	Anzahl der Teilungen mindestens 16 Punktezahl für Bogenabschnitte 15 Aufstandsbreite Einzel- und Linienlasten 0,500 [m] Image: Comparison of the state o	 Rundschnittführung immer nach Fehlsektor-Verfahren automatischer Bewehrungsvorschlag nach jeder Neubemessung Nachweise über den stützenden Bauteilen Nachweise der Einzellasten (FZ) auf der Platte

Die **Anzahl der Teilungen** bestimmt die Mindestanzahl der untersuchten Sektoren. Sinnvoll sind 8 - 16 Teilungen. Eine beliebig höhere Anzahl ist möglich aber nicht sinnvoll, da eine wesentlich höhere Genauigkeit der Ergebnisse in den meisten Fällen nicht zu erwarten ist. Die Rechenzeit steigt mit der Anzahl der gewählten Sektoren.

Die **Punktezahl für die Bogenabschnitte** legt die Anzahl der Bogenpunkte des jeweiligen Rundschnittbereiches an den Bauteilkanten fest. Sinnvoll sind Werte zwischen 10 und 20 Punkten. Höhere Werte sind möglich aber nicht sinnvoll, da eine wesentlich höhere Genauigkeit der Ergebnisse in den meisten Fällen nicht zu erwarten ist.

Die Option *Lasten nur außerhalb des Rundschnittes ansetzen* ist Standard. Es werden üblicherweise nur die Lasten angesetzt, die außerhalb des jeweiligen Rundschnittes liegen. Andernfalls wird die gesamte Last im Sektor angesetzt, was zu geringfügig ungünstigeren Bemessungen führt, aber die Rechenzeit, insbesondere bei einer großen Lastanzahl, erheblich verkürzen kann.

Die *Rundschnittführung immer nach dem Fehlsektor-Verfahren* ergibt den kleinst möglichen Rundschnittumfang. Hierbei werden die Schnittpunkte des äußeren Rundschnitts mit den Bauteilkanten ermittelt (sofern erforderlich) und damit die resultierenden Abzugsektoren berechnet. Die auf den Abzugsektoren liegenden Lasten werden auf die jeweils angrenzenden Sektoren verteilt. Wenn diese Option deaktiviert wird, erfolgt eine orthogonale Rundschnittführung (siehe EN 1992-1-1:2004(D) Bild 6.15)

Verfahrensbedingt unterscheiden sich die nötigen Eingaben wie folgt:

Fundamentplatte

- Größe der Platte oder des betrachteten Plattenausschnitts
- Form, Lage und Größe der zu untersuchenden Stütze
- Die sich aus der Stützenbelastung ergebende <u>Bodenpressung</u> (!) unter der Platte. Hinweis: verfahrensbedingt ist es <u>nicht</u> erforderlich, die Stützenbelastung einzugeben!

Deckenplatte

- Größe der Platte oder des betrachteten Plattenausschnitts
- Form, Lage und Größe der zu untersuchenden punktuellen Stützungen
- Die Belastungen der Platte; dies können Einzel- Linien- und Flächenlasten sein.
- Wahlweise können Einzellasten auf der Platte nachgewiesen werden. (bei Fundamenten entfällt diese Option).

<u>System</u>

Die Systemeingabe kann über ein interaktives Grafikfenster oder über die entsprechenden Dialoge und deren Tabellen erfolgen. Beide Modi sind jederzeit aktiv und verfügbar.

Das interaktive Grafikfenster bietet die Möglichkeit neue Elemente hinzuzufügen, bestehende zu verschieben, zu kopieren oder zu bearbeiten. Diverse Kontextmenüs und Eingabedialoge unterstützen Sie hierbei. Um die Eingaben bei komplexeren Systemen optimaler zu handhaben, bietet der Grafikeditor verschiedene Zoom- und Lupenfunktionen.

Um ein Element zu aktivieren muss es mit der Maus angeklickt werden. Das Element wird nun hellblau hinterlegt. Wird die linke Maustaste festgehalten, kann das Element mit der Maus verschoben werden. Ein Doppelklick mit der linken Maustaste auf ein Element öffnet einen Dialog, der die Bearbeitung des Elementes gestattet. Ein Mausklick mit der rechten Maustaste auf ein Element öffnet ein Kontextmenü mit weiteren Bearbeitungsoptionen.

Bei der Aktivierung eines Elementes wird dieses in den klassischen Eingabedialogen ebenfalls markiert. Hierbei wird automatisch der zugehörige Dialog aktiviert (z.B. beim Wechsel von einem Stützenelement zu einem Öffnungselement).

Wenn Sie in den klassischen Eingabedialogen in einer Tabelle ein Element auswählen, wird dieses auch im Grafikeditor markiert.

Klassische Eingabedialoge

Platte

Es können folgende Plattenformen ausgewählt werden:

Kreis, Rechteck, Polygon

Die Koordinaten (x- bzw. y-Koordinate) beziehen sich beim Rechteck auf die linke untere Ecke und beim Kreis auf den Mittelpunkt.

Platte	Stützen	Öffnunge	n			
Bezeic	hnung	Deckenplat	te			
Fläche	enform	Rechteck				
K		0.000		K. F. I	0.000	
x-Koor	dinate	0,000	m	y-Koordinate	0,000	m
	bx	5,000	m	by	4,000	m
Platte	ndicke	0,240	m			

Stützen

Für die Stützen können Kreis-, Rechteck- und Polygonquerschnitte gewählt werden. Für jede Stützenform kann wahlweise eine Verstärkung (schräg oder stufenförmig) definiert werden. Diese Option steht nur für Deckenplatten zur Verfügung.

Platte	Stützen	Öffnunger	1								
I 4	2	von 3	🕨 🕅 🕇	4 🗶 🖓	<u> </u>		Geometrie: S	itūtze 2			
	Bez	eichnung	Form	Verstärkung	delta I [m]	Höhe [m]	x-Korrdinate	4,350	m	y-Koordinate	0,650 m
1	Stütz	e 1	Rechteck	keine	-	-	Radius	0,150	m		
▶ 2	Stütz	e 2	Kreis	schraeg	0,25	0,16					
3	Wan	d	Polygon	keine	-	-					

Öffnungen

Für Öffnungen in der Platte können Kreis-, Rechteck- und Polygonquerschnitte gewählt werden. Diese Option steht nur für Deckenplatten zur Verfügung.

Platte	Stützen Öffnungen					
14 4	1 von 3 🕨	M 🖆 📮 🗙 🐚 🔞	Geometrie: (Offnung 1		
	Bezeichnung	Form	€ € Nr.	1 von 6 🕨	N 🖆 📮 🗙 🔰	
¥1	Offnung 1	Polygon		X [m]	Y [m] 🔨	Verschiebung
2	Öffnung 2	Rechteck	▶1	0,000	0,000	x-Richtung 2,000 m
3	Öffnung 3	Kreis	2	1,500	0,000	y-Richtung 0,700 m
			3	1,500	1,000	Drehung
			4	1,000	1,000	um Punkt Nr. 0
			5	1,000	0,500	Drehwinkel 25.00 °
			6	0,000	0,500 🗸	20,00

<u>Einwirkungen</u>

Die Einwirkungseingabe kann über ein interaktives Grafikfenster erfolgen. Es gilt sinngemäß die bei der Systemeingabe beschriebene Vorgehensweise.

Es erfolgt generell die Eingabe charakteristischer Lasten. Aus diesen werden automatisch alle Kombinationen gebildet, die sich aus den verwendeten Kategorien ergeben können.

Für Deckensysteme können Einzellasten, Linienlasten und Flächenlasten eingegeben werden. Bei Fundamenten sind nur Flächenlasten erlaubt. In diesem Fall sind die für das Fundament ermittelten Sohlspannungen als Last einzugeben.

Optionen

Die Eingabeart legt fest, ob mit Einwirkungsgruppen (EWG) Lastfälle gebildet werden sollen.

Einwirkungsgruppen

Zu <u>Einwirkungsgruppen</u> und <u>Lastfällen</u> siehe <u>diese gesonderte Beschreibung</u>. Dort wird auch die Lastübernahme aus anderen Positionen und die Quicklast – Funktion erläutert.

Einzellasten

Optionen	Einwirkungsgruppen	Einzellasten	Linienlaste	n 🛛 einfache Flä	ichenlasten	allgemei	ine Flächer	nlasten K	Gategorien Las	fälle	
M 4 (2 von 5 🕨	von 5 🕨 🕅 🖆 📮 🗙 🛅 🛍 🛱 👺 🖳									
	Beschreibung		Тур	Kat	Ewg	X [m]	Y [m]	Z [m]	Wert [kN]	Alpha	Faktor
1	ständige Last		FZ	G	1	0,00	0,00	-	300,00	-	1,00
▶ 2	Verkehr, Wohnräum	e	FZ	Q,A2	2	0,50	0,50	-	600,00	-	1,00

Mögliche Lasttypen für Einzellasten in kN bzw. kNm:

FZ = vertikal,

- FX = horizontal in x-Richtung,
- FY = horizontal in y-Richtung,
- MX = Moment um die x-Achse
- MY = Moment um die y-Achse

Die Abstände X und Y der Einzellast werden in Bezug auf den definierten Nullpunkt der Platte gemessen. Bei horizontalen Lasten ist zusätzlich der Abstand Z von der Plattenoberkante einzugeben.

Lastabminderungen (und Erhöhungen) sind über einen Faktor frei wählbar oder für Verkehrslasten aufgrund der Lasteinzugsfläche bzw. der Geschoßanzahl ermittelbar.

Erfolgt die Eingabe über den Dialog. (Doppelklick auf eine Einwirkungszeile), besteht die Möglichkeit einen Abminderungsfaktor zu berechnen (siehe Bild rechts).

Der Button "berechnen" ist bei den Kategorien "Q,A1" bis "Q,E11" und "Q,Z" aktiv.

	Finzeleinwirkung	
Basisdaten		Abminderung
Bezeichung:	Verkehr, Wohnräume	<keine> V</keine>
Lasttyp:	FZ v	
Kategorie:	Q,A2 - Wohn-und Aufenthaltsräume: ausreiche V	berechnen
EWG:	002-2 🗸	Faktor: 1,00
x -Koordinate [r 0,1	n] y -Koordinate [m] 00 0,00	Char. Betrag [kN] 600,00

Linienlasten

Die Eingabe der Linienlasten erfolgt analog zu den Einzellasten. Möglicher Lasttyp für Linienlasten: qZ = vertikale Linienlast

Die Linienlast darf beliebig über die Platte verlaufen. Als Bezugspunkt für die Linienlasteingabe dient der Plattennullpunkt. Neben der Möglichkeit den Anfangs- und Endpunkt der Linienlast festzulegen kann der Endpunkt auch durch die Abstandswerte Dx und Dy ermittelt werden. Die Größe der Last wird in kN/m für den Anfangs- und den Endwert eingegeben.

Einfache Flächenlasten

Die Eingabe der einfachen Flächenlasten erfolgt analog zu den Einzel- und Linienlasten.

Möglicher Lasttyp für einfache Flächenlasten:

qZ = Einzellast auf eine definierte Fläche verteilt

Die Fläche der Flächenlast kann über die Abstände X1 und X2 von Plattennullpunkt gesetzt werden. Alternativ kann auch anstelle von X2/Y2 auch ein Abstand Dx/Dy gesetzt werden, um die Fläche zu definieren. Der Lastwert ist in [kN/m²] anzugeben.

Allgemeine Flächenlasten

Die Eingabe der allgemeinen Flächenlasten erfolgt analog zu den Einzel- und Linienlasten. Der Unterschied zu den einfachen Flächenlasten besteht darin, dass bei der allgemeinen Flächenlast beliebig viele frei eingebbare Polygonpunkte zur Verfügung stehen und der Lastwert entweder konstant über die eingegebene Fläche

(Angabe eines Lastbetrages) oder über 3 Lastwerte an 3 Ecken definiert ist. Die Lastbeträge sind jeweils in [kN/m²] anzugegeben. Die Nummerierung der Punkte erfolgt gegen den Uhrzeigersinn. Der Bezugspunkt der einzelnen Polygonpunkte ist der Plattennullpunkt.

Mögliche Lasttypen für einfache Flächenlasten: qZ = Flächenlast [kN/m²] senkrecht zur Plattenebene

I 4	Nr. 3 vo	on 4 🕨 🔰 🗏	Ļ≣ '	×
	X [m]	Y [m]	Set	Betrag [kN/m²]
1	-1,000	-2,000	✓	1,00
2	2,000	-1,500	◄	2,00
▶ 3	1,500	1,750	✓	3,00
4	-1,500	1,500		

Kategorien

Optionen	Einwirkungsgruppen Streckenlasten Einzellasten	Kategorien	Lastfä	lle							
Kategorien für die Kombinatorik											
Kat.	Beschreibung Ψ 0 Ψ										
G	Ständige Einwirkungen	0,00	0,00	0,00							
Q,A	Wohnfläche	0,70	0,50	0,30							
Q.W	Windlasten	0,60	0,20	0,00							

Die bei der Lasteingabe verwendeten Last-Kategorien werden aufgelistet, so dass die Ψ - Werte bei Bedarf geändert werden können.

Lastfälle

Zu <u>Einwirkungsgruppen</u> und <u>Lastfällen</u> siehe <u>diese gesonderte Beschreibung</u>. Dort wird auch die <u>Lastüber-</u> <u>nahme aus anderen Positionen</u> und die <u>Quicklast – Funktion</u> erläutert.

Bemessungsvorgaben

Expositionen

Als Vorgabe für die Expositionsund Feuchteklassen sind XC1 (bei Fundamenten XC) und W0 eingestellt. Im Programmpunkt Expositionen kann dies für beide Bauteilseiten getrennt geändert werden.

Beme	emessungsvorgaben											
Expositionen												
Klasse 1	Klasse 2	Klasse 3-	Klasse 4	Klasse 5-	Klasse 6-	Klasse 7—	-Klasse 8					
🗖 X0	💌 XC1	📃 XD1	📃 XS1	📃 XF1	📃 XA1	📃 XM1	🔽 W0					
	📃 XC2	📃 XD2	📃 XS2	📃 XF2	📃 XA2	📃 XM2	🔲 WF					
	📃 XC3	📃 XD3	📃 XS3	📃 XF3	📃 XA3	📃 ХМЗ	🗖 WA					
	📃 XC4			📃 ×F4			📃 WS					

Material

Als Vorgabe ist eingestellt:

Betonart: "Normalbeton"

Betonherstellung: "Transportbeton"

Betonwahl: "C25/30"

Größtkorn: "16 mm"

Betonstahl: "B500A"

Bemess	ungsvorg	ab	en		◀ zurück	weiter	►
Expositionen Mater	ial						
Beton			Betonkennwerte				^
Betonart	Normalbeton	~	E-Module	Ecm =	31.000	N/mm²	
Betonherstellung	Transportbeton	~	Zylinderdruckfestigkeit	fok = fom =	25,0 33.0	N/mm² N/mm²	
	(Mindestbeton: C16/20)	_	Würfeldruckfestigkeit	fck,cube =	30,0	N/mm ²	
Betonwahl	C25/30	~	Zugfestigkeit	fctm =	2,6	N/mm ²	
Dotorman	020100			fctk,U5 =	1,8	N/mm ²	
Größtkorn	16 mm	*	Wichte	100,95 =	3,3 23,5	IN7mm kN17m2	
Sandzuschlag	Sonstiger	~		Υ -	20,0	NDUIIT	
Rohdichteklasse	2.0 (1.801-2.000 ka/m²	~	Betonstahl				
Betonstahl	B500A	~	Norm	=	DIN 488-1	N/mm²	
			E-Module G-Module	E =	200.000	N/mm ⁺	
			Steckgrenze	fuk =	500	N/mm²	
			Zuafestiakeit	fuk =	525	N/mm²	
			2 2				~

Möglich ist die Auswahl zwischen folgenden Parametern:

- Betonart: Normalbeton / Luftporenbeton / Leichtbeton
- Betonherstellung: Transportbeton / Ortbeton / Fertigteil
- Betonwahl: "C12/15" bis "100/115"
- Größtkorn: 8 / 16 / 32 / 63 mm
- Betonstahl: "B500A" / "B500A +G" / "B500A +P" / "B500B" nach DIN 488-1:2009-08

Betondeckung

Die Betondeckung kann seitenweise geändert werden. Wichtig ist der voraussichtliche maximale Bewehrungsdurchmesser (max. Ø), nach welchem sich die Mindestbetondeckung richtet.

Wenn von den Mindestwerten abgewichen wurde, können sie mit dem Schalter "Mindestwerte" wieder hergestellt werden. Mit "Details" lassen sich weitere Einzelheiten ein- und ausblenden, siehe unten.

Expositionen Material Betondeckung											
Mindestwerte Details											
	$\begin{array}{c c} & \underset{\mbox{max.}\ensuremath{ \sc {C}}}{\mbox{mm}} & \underset{\mbox{mm}\ensuremath{ \sc {C}}}{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {C}}}{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}}{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}}{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}}{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}}{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensuremath{ \sc {mm}}} & \underset{\mbox{mm}\ensurema$										
•	oben	20	20	20	15	35	15	35			
	unten	20	20	20	15	35	15	35			

Expositi	Expositionen Material Betondeckung													
Minde	Mindestwerte Details													
	Seite	C _{min,dur,Teb.} [mm]	∆c _{dur,Fest.} [mm]	c _{min,dur} [mm]	∆c _{dur,} γ [mm]	∆c _{dur,st} [mm]	∆c _{dur,edd} [mm]	max. ∅ [mm]	c _{min,b} [mm]	c _{min} [mm]	∆c _{dev} [mm]	c _{nom} [mm]	gew. ∆c _{dev} [mm]	gew. c _{nom} [mm]
•	oben	20	0	20	0	0	0	20	20	20	15	35	15	35
	unten	20	0	20	0	0	0	20	20	20	15	35	15	35

Bewehrung

Bei Deckensystemen ist die obere Bewehrung der Platte für den jeweiligen Nachweisort im Bereich des entspechenden Stützbauteils zuzüglich 3d je Seite gesondert vorzugeben. Dies gilt für Einzellastnachweise analog (hierbei für die untere Plattenbewehrung).

Bei Fundamenten ist die Sohlbewehrung wie oben beschrieben einzugeben.

Eingabeparameter sind die Bewehrungsrichtung der 1. Bewehrungslage (randnahe Lage), der Bewehrungsquerschnitt je Richtung sowie der Stabdurchmesser je Richtung. Die resultierenden statischen Höhen sowie die Bewehrungsgehalte werden bei jeder Datenänderung automatisch aktualisiert.

1. E	lewehrungslage verläuft in (x-Richtung 💿 y-F	Richtung						
	Bewehrung im Bereich	as,x [cm²/m]	as,y [cm²/m]	ds,x [mm]	ds,y [mm]	dx [m]	dy [m]	ρx	ρ.y
•	Stütze 1	12,00	15,00	12,0	8,0	0,1960	0,2060	0,00612	0,00728
	Stütze 2	8,00	12,00	12,0	6,0	0,1980	0,2070	0,00404	0,00580
	Wand	1,88	1,88	6,0	6,0	0,2010	0,2070	0,00094	0,00091

Einzellastparameter

Für den Durchstanznachweis von Einzellasten auf Deckenplatten können die zum Nachweis erforderlichen Parameter festgelegt werden.

Es ist der Lasterhöhungsfaktor β nach Bild NA.6.21, sowie die Art und Abmessung der Lasteinleitungsfläche vorzugeben. Bei den Lasteinleitungsflächen kann zwischen kreisförmigen und rechteckigen Lasteileitungsflächen gewählt werden.

	Bezeichnung	β	Lastfläche	r [m]	cx [m]	cy [m]
•	Last(4 1,5)	1,50	Rechteck V	-	0,30	0,30
	Last(0,57 1,7)	1,10	Kreis	0,10	-	-

Bemessung

Der Durchstanznachweis von Stützbauteilen für Fundamente und Deckenplatten wird mit dem Sektorverfahren geführt. Alle relevanten Daten werden in einem Dialog (siehe Bild unten) angezeigt.

Bei Deckensystemen mit mehreren Stützbauteilen kann über eine Combobox die gewünschte Stütze ausgewählt und die zugehörigen Daten angezeigt werden. Ein Mausklick auf die entsprechende Einzugsfläche in der interaktiven Durchstanzgrafik führt zum selben Resultat.

Wenn eine Durchstanzbewehrung erforderlich ist, wird diese automatisch ermittelt. Die Daten können individuell geändert werden. Wahlweise können Bügel der Biegeform B1, B2 oder D2 (Default) oder Schrägeisen der Biegeform C1 oder C2 zur Anwendung kommen. Bei der Wahl von Schrägeisen kann der Neigungswinkel der Aufbiegung vorgegeben werden.

Der Durchstanznachweis für Einzellasten auf einer Deckenplatte erfolgt analog in einem gesonderten Dialog.

Bemessung

Partie	0.0. 4				1			2.04		<i>σ</i> . 15	2 K	L	C . 0	110		
Stutze	Stutze 1	- 15			~	maugeber		: 3 Situ	ation: P.	/1. LF	Z, NOM	Dination	: G + Q	, I (GSU	P)	
stat. I	Höhen / Be	wehrungs	grade /	Normalsp	annungen	Durchstanz	nachweis	für Platte	(äußerer	Schnitt)						
dx	0,196	m	dy	0,206	m	dm	0,201	m	rC	init 🗌	0,402	m		uCrit	3,725	m
рх	0,0179		ру	0.0170		vEd,max	0,962	MN/m	² vRo	de 🚺	0,943	MN/m²	vRo	l,max	1,321	MN/m ²
σχ	0,000	MN/m ²	σу	0,000	MN/m²	Durchsta	nzbewehru	ing erford	derlich, Ma	aximaltra	agfähigk	eit ist ausr	eichend			
						Durchstanz	bewehrung	g für Platt	te (äußere	er Schni	tt)					
						 senkrec 	hte Bügel	🔾 auf	gebogene	e Stäbe						
						Ì	rEd,max MN/m³]	erfAs [cm²]	sw [m]	n [St.]	ds [mm]	vorhAs [cm²]	ui [m]	u1,5d [m]	u,out [m]	Form
										1000	1000010	20.003	1000000	1		
						▶ 1	2,078	7,95	0,100	6	10,0	9,42	1,83	4,67	1,21	D2

ACHTUNG!

Wenn in den Programmoptionen die Option "automatischer Bewehrungsvorschlag nach jeder Neubemessung" nicht ausgewählt wurde, wird die gewählte Bewehrung nicht verändert. Sollte die gewählte Bewehrung nicht mehr ausreichend sein, erscheint in der betreffenden Bewehrungszeile ein Fehlersymbol. Wird der Mauszeiger über das Symbol gebracht erscheint der zugehörige Fehlertext.

Ausgabeumfang

Der Ausgabeumfang von Text- und Grafikausgaben (Systembilder) kann über den unten gezeigten Dialog individuell eingestellt werden.

Literatur

- [1] DIN EN 1990:2010-12 mit DIN EN 1990/NA:2010-12 [Grundlagen der Tragwerksplanung]
- [2] DIN EN 1992-1-1:2010-12 mit DIN EN 1993-1-1/NA:2010-12 [Stahlbeton]
- [3] DIN EN 13501-2:2010-2 [Feuerwiderstandsklassen]
- [4] DIN 488-1:2009-08 [Betonstahl Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung]
- [5] Goris, A.: Stahlbetonbau-Praxis nach Eurocode 2, 4. Auflage 2011, Bauwerk / Beuth Verlag

POS.306 DURCHSTANZNACHWEIS

Programm: 076C, Vers: 01.01.001 07/2013

Grundlagen: DIN EN 1990/NA: 2010-12 DIN EN 1991-1-1/NA: 2010-12 DIN EN 1992-1-1/NA: 2011-01

Programmoptionen

Bauteil: Decke mit Öffnungen Sektormodell mit mindestens 8 Sektoren, Anzahl der Punkte für Bögen 15 Aufstandsbreite für Einzel- und Linienlasten 1 m Lastansatz: nur außerhalb jedes Rundschnittes. Rundschnitte: immer nach Fehlsektorverfahren. Durchstantznachweis für Stützbauteil(e) Durchstanznachweis für Einzellasten (FZ) auf der Platte

System:

Platte:

h = 24.0 cm

Nr	1:	Polygon	Deckenplatte
Nr.		x [m]	y [m]
1		0.0000	0.00000
2		8.00000	0.00000
3		8.00000	6.00000
4		3.00000	6.00000
5		2.00000	4.00000
6		0.0000	4.00000

Stützen:

Nr 1: Rechteck Stütze 1 Ecke links unten x/y = 0.50/2.00 m, by/bx = 0.24/0.36 m Verstärkung schraeg, lH = 0.200 m, hH = 0.200 m

Nr	2:	Polygon Wand	d
Nr.		x [m]	y [m]
1		4.00000	4.50000
2		4.00000	1.50000

Programmvertriebsgesellschaft mbHLange Wender 134246 Vellmar0561-982050Projekt Bsp.Programm 76CPos	info@pbs.de 306 Seite 2	PBS Programmvertriebs
Nr.x [m]y [m]36.000001.5000046.000001.7400054.240001.7400064.240004.50000		
Nr 3: Kreis Stütze 2 Mittelpunkt x/y = 6.80/ 4.80 m,	Durchme	sser d = 0.1
Öffnung		
Nr 1: Rechteck Installation Ecke links unten x/y = 1.60/ 2.00 m,	by/bx =	0.50/ 0.7
EWG Einwirkungsgruppe 1 Eigengewicht 2 Verkehrslast		
Lastfälle:		
<u>Nr. Bezeichnung</u> 1 LF1		
2 Eigengewicht + Verkehrslast		
Kategorien und Kombinationsbeiwerte:		
Kate-		KombBeiwer
gorie Bezeichnung		Psi0 Psi1 F
Q,1 Sonstige Nutz-u.Verkehrslasten 1		0.80 0.70 (
Teilsicherheitsbeiwerte:		
Nachweis Situation	G,inf/sup	Q1 Qi
STR Ständig und vorübergehend	1.00/1.35	1.50 1.50
Kombinationen		
KNr. LF BemSituation Kombination		
3 2 STR, P/T Gsup + Q,1 4 Ginf + 0.1		
Nachweiser		
STR : Versagen oder übermäßige Verformungen o	des Tragwerks	
Bemessungssituationen:		
P/T : Ständig und vorübergehend		

info@pbs.de

Seite 3

Einzeleinwirkungen:

<u>Erläuterungen zu den Einwirkungen:</u> FZ = Globale Einzellast in Z-Richtung x, y = Lastkoordinaten [m]. z = Lastansatz für horizontale Lasten [m] (ab Oberkante Platte).

Einwirkung aus	тур	Kat.	EWG	х	_ y _	z	Betrag	Abmin.
1-1	-	-	-				[KN/m²]	
Stütze 2 (OG)	FZ	G	1	7.50	4.00	0.00	74.07	- 1.00
Stütze 2 (OG)	FZ	Q,1	2	7.50	4.00	0.00	33.33	- 1.00
Stütze 1 (OG)	FZ	Q,1	2	2.25	1.50	0.00	33.33	- 1.00
Stütze 1 (OG)	FZ	G	1	2.25	1.50	0.00	74.07	- 1.00
Stütze 3 (OG)	FZ	G	1	3.00	5.00	0.00	148.14	- 1.00
Stütze 3 (OG)	FZ	Q,1	2	3.00	5.00	0.00	33.33	- 1.00

Erläuterungen zu den Einwirkungen:

qZ = Globale Streckenlast in Z-Richtung

x, y = Lastkoordinaten der Lastgrundfläche [m].

<u>Einwirkung aus</u>				тур	Kat.	EWG	Abmin.
Eigengewicht				qZ	G	1	- 1.00
	Lastkoordinaten	x [m]	y [m]		Beti	rag	[kN/m²]
		0.00	0.00			-	6.00
		8.00	0.00				-
		8.00	6.00				-
		3.00	6.00				-
		2.00	4.00				-
		0.00	4.00				-

		-	тур	Kat.	EWG	Abmin.
		(qZ	Q,1	2	- 1.00
Lastkoordinaten	x [m]	y [m]		Beti	rag	[kN/m²]
	0.00	0.00			_	3.50
	8.00	0.00				-
	8.00	6.00				-
	3.00	6.00				-
	2.00	4.00				-
	0.00	4.00				-
	Lastkoordinaten	Lastkoordinaten x [m] 0.00 8.00 8.00 3.00 2.00 0.00	Lastkoordinaten x [m] y [m] 0.00 0.00 8.00 0.00 8.00 6.00 3.00 6.00 2.00 4.00 0.00 4.00	Typ qZ Lastkoordinaten x [m] y [m] 0.00 0.00 8.00 0.00 8.00 6.00 3.00 6.00 2.00 4.00 0.00 4.00	Typ Kat. qZ Q,1 Lastkoordinaten x [m] y [m] Betr 0.00 0.00 8.00 0.00 8.00 6.00 3.00 6.00 2.00 4.00 0.00 4.00	Typ Kat. EWG qZ Q,1 2 Lastkoordinaten x [m] y [m] Betrag 0.00 0.00 8.00 0.00 8.00 0.00 4.00 4.00 0.00 4.00 4.00 4.00

Baustoffe

Betonbez	Größtkorn	Herstellart	—— ECM —	
C35/45	16 mm	Transportbeton	34000 N/m	m²

Betonstahl: B500A

Überdeckungen		Expositions-/	c.min	delta.c	cv
<u>Ort</u>	Seite	Feuchteklassen	[mm]	[mm]	[mm]
überall	umlaufend	XC1, WO	20	10	30

Plattenbewehrung oben:

	as,x	as,y	d,x	d,y	rho,x	rho,y
<u>Im Bereich</u>	[cm²/m]	[cm²/m]	[m]	[m]	[-]	[-]
Stütze 1	25.00	17.50	0.2070	0.2010	0.01208	0.00871
Wand	35.00	25.00	0.2070	0.2010	0.01691	0.01244
Stütze 2	45.50	35.50	0.2050	0.1950	0.02220	0.01821

Plattenbewehrung unten:

	as,x	as,y	d,x	d,y	rho,x	rho,y
<u>Im Bereich</u>	[cm²/m]	[cm²/m]	[m]	[m]	[-]	[-]
Last(2,25 1,5)	15.00	12.00	0.2070	0.2010	0.00725	0.00597
Last(7,5 4)	15.00	12.00	0.2070	0.2010	0.00725	0.00597
Last(3 5)	20.00	20.00	0.2070	0.2010	0.00966	0.00995

Einzellastparameter

<u>Einzellast</u>	Beta	Lastflächenart	r [m]	cx [m]	cy [m]
Last(2,25 1,5)	1.10	Kreis	0.100	-	_
Last(7,5 4)	1.40	Rechteck	-	0.240	0.800
Last(3 5)	1.40	Kreis	0.100	-	-

Nachweis für Stütze 1

Nachweisort: außerhalb der Verstärkung

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	vEd,max	vRdc	vRd,max
	[m] ———		[-]		[MN/m²	²]	
0.2040	0.353	2.867	0.01025	0.0000	1.0672	0.7878	1.1029

vEd,max > vRdc --> Durchstanzbewehrung erforderlich!

Sektordaten:

Sektor	Sektorfläche	Lastfläche	VEdi	ui	vEdi	beta
[-]	[m²]	[m²]	[MN]	[m]	[MN/m²]	[-]
1	1.1986	1.0151	0.0195	0.455	0.2101	3.415
2	0.9620	0.8063	0.0108	0.420	0.1256	2.041
3	0.7852	0.6270	0.0089	0.424	0.1026	1.669
4	0.3157	0.3157	0.0000	0.000	0.0000	0.000
5	0.3157	0.3157	0.0000	0.000	0.0000	0.000
6	0.8863	0.7405	0.0102	0.390	0.1284	2.088
7	1.2141	1.0768	0.0145	0.374	0.1905	3.098
8	1.3446	1.1751	0.0279	0.414	0.3298	5.361
9	0.8362	0.7013	0.0846	0.388	1.0672	17.350
10	0.5761	0.5761	0.0000	0.000	0.0000	0.000
11	0.7153	0.7153	0.0000	0.000	0.0000	0.000

Durchstanzbewehrung mit Stabstahlbewehrung

	erf.As	SW	n	ds	Form	vorh.As	ui	u1.5d	u,out
Reihe	[cm²]	[m]	[-]	[mm]	[-]	[cm ²]	[m]	[m]	[m]
1	11.57	0.102	8	10.0	D2	12.57	3.12	6.32 >	1.42
2	6.48	0.153	8	10.0	D2	12.57	2.84	7.29 >	1.36

Nachweis für Wand 1

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	vEd,max	vRdc	vRd,max
	— [m] ———		[-]		[MN/m	²]	
0.2040	0.408	1.361	0.01450	0.0000	1.1423	0.8842	1.2379

vEd,max > vRdc --> Durchstanzbewehrung erforderlich!

Seite 7

Sektordaten:

Sektor	Sektorfläche	Lastfläche	VEdi	ui	vEdi	beta
[-]	[m²]	[m²]	[MN]	[m]	[MN/m²]	[-]
1	0.1666	0.1205	0.0043	0.174	0.1199	1.560
2	0.4970	0.4544	0.0376	0.161	1.1423	14.860
3	0.6198	0.5735	0.0322	0.170	0.9270	12.059
4	0.8848	0.8349	0.0111	0.174	0.3133	4.076
5	0.6251	0.5752	0.0077	0.174	0.2159	2.808
6	0.4492	0.4029	0.0054	0.170	0.1549	2.016
7	0.4010	0.3584	0.0048	0.161	0.1454	1.891
8	0.1624	0.1164	0.0016	0.174	0.0437	0.568
9	0.0598	0.0598	0.0000	0.000	0.0000	0.000
10	0.0598	0.0598	0.0000	0.000	0.0000	0.000

Durchstanzbewehrung mit Stabstahlbewehrung

	erf.As	SW	n	ds	Form	vorh.As	ui	u1.5d	u,out
<u>Reihe</u>	[cm²]	[m]	[-]	[mm]	[-]	[cm²]	[m]	[m]	[m]
1	5.52	0.102	6	8.0	D2	6.03	0.88	12.28 >	0.73
2	3.09	0.153	6	8.0	D2	6.03	1.12	13.24 >	0.71

Nachweis für Wand 2

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	∨Ed,max	vRdc	vRd,max
	— [m] ———		[-]		[MN/m ²	2]	
0.2040	0.408	2.001	0.01450	0.0000	0.3124	0.8842	1.2379

vEd,max < vRdc --> keine Durchstanzbewehrung erforderlich!

Sektordaten:

Sektor	Sektorfläche	Lastfläche	VEdi	ui	vEdi	beta
[-]	[m²]	[m²]	[mn]	[m]	[MN/m²]	[-]
1	0.4632	0.3996	0.0053	0.241	0.1086	2.613
2	0.7470	0.6761	0.0090	0.255	0.1736	4.176
3	1.3054	1.2315	0.0165	0.258	0.3124	7.518
4	1.0816	1.0154	0.0136	0.247	0.2694	6.482
5	1.0816	1.0154	0.0136	0.247	0.2694	6.482
6	0.9586	0.8847	0.0118	0.258	0.2245	5.402
7	0.6439	0.5730	0.0076	0.255	0.1471	3.539
8	0.4960	0.4324	0.0058	0.241	0.1175	2.827
9	0.0317	0.0317	0.0000	0.000	0.0000	0.000
10	0.0317	0.0317	0.0000	0.000	0.0000	0.000

Nachweis für Wand 3

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	vEd,max	vRdc	vRd,max
	— [m] ———		[-]		[MN/m ²	²]	
0.2040	0.408	2.001	0.01450	0.0000	2.8320	0.8842	1.2379

vEd,max > vRd,max --> maximaler Durchstanzwiderstand überschritten!

Sektordaten:

Sektor	Sektorfläche	Lastfläche	VEdi	ui	vEdi	beta
[-]	[m²]	[m²]	[MN]	[m]	[MN/m²]	[-]
1	0.3425	0.2789	0.0037	0.241	0.0758	0.520
2	0.4603	0.3894	0.0052	0.255	0.1000	0.686
3	0.7183	0.6444	0.0086	0.258	0.1634	1.122
4	0.6315	0.5654	0.0075	0.247	0.1500	1.030
5	0.6315	0.5654	0.0075	0.247	0.1500	1.030
6	0.7764	0.7025	0.0705	0.258	1.3387	9.191
7	0.6799	0.6090	0.1473	0.255	2.8320	19.444
8	0.5862	0.5226	0.0411	0.241	0.8361	5.741
9	0.0317	0.0317	0.0000	0.000	0.0000	0.000
10	0.0317	0.0317	0.0000	0.000	0.0000	0.000

Nachweis für Stütze 2

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	vEd,max	vRdc	vRd,max
	- [m] ———		[-]		<u> [MN/m</u>	2]	
0.2000	0.400	3.262	0.02000	0.0000	1.2958	0.9658	1.3521

vEd,max > vRdc --> Durchstanzbewehrung erforderlich!

Sektordaten:

Sektor	Sektorfläche	Lastfläche	VEdi	ui	vEdi	beta
[-]	[m²]	[m²]	[mn]	[m]	[MN/m²]	[-]
1	0.7200	0.6143	0.0082	0.408	0.1006	1.400
2	0.7200	0.6143	0.0082	0.408	0.1006	1.400
3	0.7200	0.6143	0.0082	0.408	0.1006	1.400
4	1.0403	0.9346	0.0125	0.408	0.1530	2.131
5	0.8148	0.7091	0.0095	0.408	0.1161	1.616
6	1.1339	1.0282	0.0137	0.408	0.1683	2.344
7	1.5560	1.4503	0.1057	0.408	1.2958	18.044
8	0.7200	0.6143	0.0683	0.408	0.8377	11.664

Durchstanzbewehrung mit Stabstahlbewehrung

	erf.As	SW	n	ds	Form	vorh.As	ui	u1.5d	u,out
Reihe	[cm²]	[m]	[-]	[mm]	[-]	[cm²]	[m]	[m]	[m]
1	15.53	0.100	10	10.0	D2	15.71	1.38	4.21 >	1.54
2	8.70	0.150	10	10.0	D2	15.71	2.32	5.15 >	1.51

Nachweis für Last(2,25|1,5)

Lange Wender 1

Projekt Bsp.

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	vEd,max	vRdc	vRd,max
	- [m] ——-		[-]		[MN/m	²]	
0.2040	0.408	2.783	0.00658	0.0000	0.2906	0.6165	0.8631

vEd,max < vRdc --> keine Durchstanzbewehrung erforderlich!

Nachweis für Last(7,5|4) 1

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	vEd,max	vRdc	vRd,max
	[m] ———		[-]		[MN/m²	·]	
0.2040	0.408	1.297	0.00658	0.0000	0.2380	0.6794	0.9511

vEd,max < vRdc --> keine Durchstanzbewehrung erforderlich!

Nachweis für Last(7,5|4) 2

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	∨Ed,max	vRdc	vRd,max
	[m] ———		[-]		[MN/m²	²]	
0.2040	0.408	1.139	0.00658	0.0000	0.2380	0.6794	0.9511

vEd,max < vRdc --> keine Durchstanzbewehrung erforderlich!

Nachweis für Last(3|5)

Maßgebend für den Nachweis: KNr.3

dm	rCrit	uCrit	rho	sig,cp	vEd,max	vRdc	vRd,max
	- [m] ———		[-]		[MN/m ³	2]	
0.2040	0.408	1.541	0.00980	0.0000	0.8120	0.7043	0.9860

vEd,max > vRdc --> Durchstanzbewehrung erforderlich!

Durchstanzbewehrung mit Stabstahlbewehrung

Reihe	erf.As [cm²]	sw [m]	n [-]	ds [mm]	Form [-]	vorh.As [cm²]	ui [m]	u1.5d [m]	u,out [m]
1	3.70	0.102	8	6.0	D2	4.52	1.04	4.15 >	2.92
2	2.07	0.153	8	6.0	D2	4.52	1.48	5.11 >	2.92