

71J Stahlbeton: Drempelaussteifung

(Stand: 02.06.2017)

Das Programm dient zur Bemessung einer Stahlbeton-Drempelaussteifung mit Ringbalken in optionaler U-Schale und der Aussteifungsstütze entsprechend DIN EN 1992-1-1 (EC 2).

Leistungsumfang

- → Material
 - Stahlbeton nach DIN EN 206-1 (Bemessung nach DIN EN 1992)

⊶ System

- Ringanker: Ein- und Mehrfeldträger
- (bis zu 20 Felder)
- Stütze: Eingespannte Kragstütze

Deckenstärke

b/h Ringbalken (Keri

- Ringanker: Rechteck optional in Formteil (U-Schale)
- Stütze: Rechteck

Einwirkungen

- Streckeneinwirkungen (konstant in vertikaler und horizontaler Richtung)
- manuelle Eingabe von Zugkräften (charakteristisch) im Ringanker
- automatische Generierung von Zugkräften nach EC2 Abs. 9.10.2.2(2) und/oder
- automatische Generierung von Zugkräften nach EC6 Abs. 8.5.1.4(1)
- automatische Generierung von 1/100 der Vertikallast nach NCI zu EC6 Abs. 8.5.1.4(1)
- Bildung von zusätzlichen Lastfällen über die Einwirkungsgruppen ist möglich
- Lastübernahme aus anderen Positionen

- Theorie I. Ordnung
- Einwirkungskombinationen nach EC 0 (DIN EN 1990) für folgende Bemessungssituationen:
 - Ständig und vorübergehend (P/T)
 - Außergewöhnlich (A)
 - Erdbeben (AE)

➡ Nachweise Stahlbeton nach EC2

Regelbemessung für Biegung mit Normalkraft, Querkraftnachweis, ggf. Bemessung, Nachweis der Schlankheitsbegrenzung,

Rissnachweis

Allgemeines

Die Programmoberfläche

WICHTIGER HINWEIS:

Für die Handhabung der neuen Programmoberfläche und für allgemeine Programmteile, wie z.B. Grunddaten / Einwirkungsgruppen / Lastübernahme / Quicklast / Ausgabe und Beenden, steht

<hi><HIER> eine gesonderte Beschreibung zur Verfügung.

Diese Beschreibung gilt sinngemäß für alle neuen Programme und wird Ihnen die Einarbeitung erleichtern.

<u>System</u>

Systemparameter

Hier erfolgt die Eingabe für allgemeine Systemvorgaben.

Der Nachweis der Drempelaussteifung kann mit oder ohne Bemessung des Ringbalkens erfolgen.

U-Schale

Hier erfolgt die Eingabe der Geometrie für die U-Schale.

Es wird automatisch überprüft, ob die Geometrien der eingegebenen U-Schale und des Betonquerschnitts (siehe im Reiter "Querschnitt") zusammen passen. Weiterhin ist die Eingabe von asymmetrischen U-Schalenwandungen möglich (z.B. gedämmte U-Schale)

Ringbalken und Stützen Querschnitt

Hier werden die Betonquerschnitte für den Ringbalken und die Stütze eingegeben.

Einwirkungen Ringbalken

Es erfolgt generell die Eingabe charakteristischer Lasten. Aus diesen werden automatisch alle Kombinationen gebildet, die sich aus den verwendeten Kategorien ergeben können.

Optionen

Die Eingabeart legt zunächst fest, ob mit Einwirkungsgruppen (EWG) manuell Lastfälle gebildet werden sollen.

Zusätzlich ist es möglich, Zugkräfte nach EC2 und EC6 automatisch generieren zu lassen.

Ei	wirkunge	en Ring	ball	ken	zurück	weiter	▶.
Option	Einwirkungsgruppen	Streckenlasten	Zuglast	Kategorien	Lastfälle		
Eing	beart						
	WG und LF verwenden						
() manuelle Eingaben						
() automatische Generien	ing					
	Zugkraft nach EC2	Abs.9.10.2.2(2)					
	Zugkraft nach EC6	Abs.8.5.1.4(1)					
	1/100 der Vertikalla	st nach NCI zu EC	6 Abs.8.5.	1.4(1)			
	astbilder ausgeben						
1	astbilder nebeneinander	2 🖨					

Einwirkungsgruppen

Zu Einwirkungsgruppen und Lastfällen siehe diese gesonderte Beschreibung. Dort wird auch die

Lastübernahme aus anderen Positionen und die Quicklast – Funktion erläutert.

Falls manuell Lastfälle gebildet werden sollen, dann muss jede Eingabezeile der Strecken- oder Einzellasten einer Einwirkungsgruppe zugeordnet werden, siehe dazu u.a. den Programmpunkt "Optionen".

Streckenlasten

Eir	inwirkungen Ringbalken												
Optione	en Einwirkungsgruppen Streckenlasten Zuglas	t Kateg	gorie	en Lastfäl	le								
📢 🔌 1 🛛 von 5 🕨 🕅 🖆 📮 🗙 🖕 🖺 🖓 🥵 🎎													
Bezeichnung				Kat.	EWG	Wert,k	Einheit	Alpha	Faktor				
•	Eigengewicht		\sim	G	0	3,00	kN/m	-	1,00				
	Schnee	qz		Q,S1	0	1,78	kN/m	-	1,00				
	Wind	qy		Q,W	0	1,10	kN/m	-	1,00				
	Eigengewicht (1/100)			G	0	0,03	kN/m	-	1,00				
Schnee (1/100)				Q,S1	0	0,02	kN/m	-	1,00				
Form	orm und Richtung der Finwirkung bzw. Last.												

Mögliche Lasttypen für Streckenlasten:

qy = horizontal,

qz = vertikal

Für die Bemessung werden nur die horizontalen Lasten herangezogen. Zur Abtragung der vertikalen Lasten wird eine kontinuierliche Lagerung unterstellt.

Mit einem Doppelklick kann für die entsprechende Zeile eine Eingabehilfe aufgerufen werden:

Einwirkungen Ringbalken

Zugkraft DIN EN 1996-1-1:8.5.1.4(1)

Optionen Einwirkungsgruppen Streckenlasten Zuglast Kategorien Lastfälle

von 1 📔 🕅 🖊 🔚 🚛 🗙 🖓 👘

Bezeichnung

Die Lastlänge kann optional "relativ" eingegeben werden. Dabei sind "0" = Systemanfang und "1" = Systemende. Demzufolge ist "0,5" die Systemmitte.

Dies erspart dem Anwender das Ausrechnen der Koordinaten und sorgt für eine automatische Anpassung, wenn sich die Systemlänge ändern sollte.

Abminderungen:

Lastabminderungen (und Erhöhungen) sind über einen Faktor frei wählbar oder für Verkehrslasten aufgrund der Lasteinzugsfläche bzw. der Geschoßanzahl ermittelbar.

EWG

114

Wertk Einheit

45.00 kN

✓ zurück

Alpha

weiter 🕨

Faktor

1,00

Der Button "berechnen" ist bei den Kategorien "Q,A1" bis "Q,E11" und "Q,Z" aktiv.

Kat

A,1

Pos Qatk

Typ

Fx

Zuglast

Im Zuglast-Control werden die automatisch generierten Zuglasten eingetragen.

Kategorien

Die bei der Lasteingabe verwendeten Last-Kategorien werden aufgelistet, so dass die Ψ - Werte bei Bedarf geändert werden können.

Einv	wirkungen Ringbalken	t zurück	wei	iter 🕨						
Optionen	Einwirkungsgruppen Streckenlasten Zuglast Kategorien Lastfälle									
Kategorie	Kategorien für die Kombinatorik									
Kat.	Beschreibung	Ψo	Ψ1	Ψ2						
A,1	Außergewöhnliche Einwirkungen	0,00	0,00	0,00						
G	Ständige Einwirkungen	0,00	0,00	0,00						
Q,S1	Schnee-,Eislasten: Höhe <= NN +1000 m	0,50	0,20	0,00						
Q,W	Windlasten	0,60	0,20	0,00						

Lastfälle

Hier müssen die verwendeten Einwirkungsgruppen entsprech-

enden Lastfällen zugeordnet

werden. Es erfolgt eine

Eir	nwii	✓ zurück weiter ▶											
Option	Dptionen Einwirkungsgruppen Streckenlasten Zuglast Kategorien Lastfälle												
M 4	🚺 🖣 LF 2 von 2 🕨 🕅 🖆 📮 🗙 🖕 👔 🧯 🕇 🔤 auto. Text												
	Nr	Beschreibung	EWG (G,inf)	EWG (G,sup)									
	1	Zugkraft DIN EN 1996-1-1:8.5.1.4(1)	114	114									
•	2	Eigengewicht	0	0									

automatische Generierung der Zugkraftlastfälle nach DIN EN 1992 und oder DIN EN 1996.

Zu <u>Einwirkungsgruppen</u> und <u>Lastfällen</u> siehe auch <u>diese gesonderte Beschreibung</u>. Dort wird auch die <u>Lastübernahme aus anderen Positionen</u> und die <u>Quicklast – Funktion</u> erläutert.

Einwirkungen Stütze

Die Einwirkungen auf die Stützen werden automatisch aus den Auflagerkräften des Ringbalkens übernommen. Weiterhin können noch zusätzliche Strecken- und Einzellasten in analoger Weise zu dem Ringanker erfasst werden.

Bemessungsvorgaben

Expositionen

Als Vorgabe für die Expositions- und Feuchteklassen sind XC1 und W0 eingestellt. Dies kann (ggf. getrennt für außen und innen) geändert werden.

Gehen Sie dazu wie folgt vor:

Mit einem <u>Doppelklick</u> auf ein Element im Eingabe- Bereich (oder einem Klick auf "Neue Exposition") wird die Expositions-Auswahl geöffnet.

Klicken Sie dort die gewünschten Expositionsklassen an und beenden Sie die Eingabe mit "OK".

	Bemessungsvorg	aben			zurück	weiter 🕨
ام میں ا	Expositionen Material Betondeckung					
una	Neue Exposition Exposition ändern					
llt. en)	Expositionen (XC1, WO)	Ort Balken Balken Stütze Stütze	Seite außen innen außen innen			
ل	Exposition ändem' ändert die Expositionen					
\sim						
Exposit	ions-Auswahl			_		
Klasse 1	Klasse 2 Klasse 3 Klasse XC1 XD1 XS XC2 XD2 XS XC3 XD3 XS XC4 XC4 XD3	4 Klasse 5 1 XF1 2 XF2 3 XF2 3 XF3 XF4	Klasse 6 Kl XA1 XA2 XA3	asse 7] XM1] XM2] XM3	Masse 8 WO WF WA WS	
XC1	Trocken oder ständig nass Beton in Gebäuden mit geringer Luftfeuchte I	Reton, der ständig in	Wasser getaucht ist			
wo	Beton, der nach normaler Nachbehandlung r Nutzung weitgehend trocken bleibt. Innenbauteile des Hochbaus; Bauteile, auf d Bodenfeuchte einwirken können und/oder d ausgesetzt werden.	iicht längere Zeit feu ie Außenluft, nicht je ie nicht ständig einer	cht und nach dem Au doch z. B. Niedersch relativen Luftfeuchte	ustrocknen wä läge, Oberfläc e von mehr als	ährend der henwasser, 80 %	
				ОК	Abbrechen	

Material

Die hier getroffene Materialauswahl bezieht sich auf den Werkstoff für den Ringbalken und die Stütze.

Als Vorgabe ist eingestellt:

Betonart:	"Normalbeton"
Betonherstellung:	"Transportbeton"
Betonwahl:	"C25/30"
Größtkorn:	"16 mm"
Betonstahl:	"B500A"

Die sich aus den Expositionen ergebende Mindestbetongüte wird angezeigt.

ab	en		✓ zurück	weiter	. ▶.
	Betonkennwerte				_
~	E-Module	Ecm =	31.000	N/mm ²	
	Zylinderdruckfestigkeit	fck =	25,0	N/mm ²	
~		fcm =	33,0	N/mm ²	
	Würfeldruckfestigkeit	fck,cube =	30,0	N/mm ²	
_	Zugfestigkeit	fctm =	2,6	N/mm ²	
\sim		fctk,05 =	1,8	N/mm ²	
~		fct,95 =	3,3	N/mm ²	
	Wichte	γ =	24,0	kN/m³	
	Betonstahl				_
	Norm	=	DIN 488-1		
~	E-Module	E =	200.000	N/mm ²	
	G-Module	G =	81.000	N/mm ²	
	Steckgrenze	fyk =	500	N/mm ²	
	Zugfestigkeit	fuk =	525	N/mm ²	
		Betonkennwerte E-Module Zylinderdruckfestigkeit Würfeldruckfestigkeit Würfeldruckfestigkeit Wichte Betonstahl Nom E-Module G-Module Steckgrenze Zugfestigkeit	Betonkennwerte E-Module Ecm = Zylinderdruckfestigkeit fck = Würfeldruckfestigkeit fck,cube = Zugfestigkeit fctm = Würfeldruckfestigkeit fctm = Zugfestigkeit fctm = Würfeldruckfestigkeit fctk,05 = fct,95 = fct,95 = Wichte Y = Betonstahl = Steckgrenze fyk = Zugfestigkeit fuk =	Betonkennwerte E-Module Zylinderdruckfestigkeit fcm = 33,0 Würfeldruckfestigkeit fct,95 = 3,3 Wichte Y = Wichte G-Module E-Module E-Module E-Module Stechstahl Steckgrenze G-Module G = 81.000 Steckgrenze fyk = 500 Zugfestigkeit fuk = 525	Betonkennwerte 31.000 N/mm² Zylinderdnuckfestigkeit fck = 25.0 N/mm² Y Grm = 33.0 N/mm² Y Y Y Y

Es gibt die Auswahl zwischen folgenden Parametern:

Betonart: Normalbeton / Luftporenbeton / Leichtbeton Betonherstellung:Transportbeton / Ortbeton / Fertigteil Betonwahl: "C12/15" bis "C100/115"; "C12/15 LP" bis "100/115 LP"; "LC12/13" bis "LC 80/88" Größtkorn: 8 / 16 / 32 / 63 mm Betonstahl: "B500A" / "B500A +G" / "B500A +P" / "B500B" nach DIN 488-1:2009-08 "B500A +G"= Bewehrungsdraht glatt / "B500A +P = Bewehrungsdraht profiliert

Betondeckung

Die Betondeckung kann seitenweise geändert werden. Wichtig ist der voraussichtliche maximale Bewehrungsdurchmesser (max. Ø), nach welchem sich die Mindestbetondeckung richtet.

Wenn von den Mindestwerten abgewichen wurde, dann können diese mit dem Schalter "Mindestwerte" wieder hergestellt

Bemessungsvorgaben

Expositionen Material Betondeckung

Mindestwerte Details

	Ort	Seite	max. ∅ [mm]	c _{min,b} [mm]	c _{min} [mm]	∆c _{dev} [mm]	c _{nom} [mm]	gew. ∆c _{dev} [mm]	gew. c _{nom} [mm]
•	Balken	außen	20	20	20	10	30	10	30
		innen	20	20	20	10	30	10	30
	Stütze	außen	20	20	20	10	30	10	30
		innen	20	20	20	10	30	10	30

werden. Mit "Details" lassen sich weitere Details ein- und ausblenden.

(1) Wenn man die Maus auf einer Spaltenüberschrift kurz still hält, dann wird die Bedeutung des Wertes angezeigt.

Bemessung Ringbalken

Optionen

In den Bemessungsoptionen werden Vorgaben und Randbedingungen für die folgenden Bemessungen getroffen.

3em	nessung F	Ringbalk	ən			ick weiter	▶.
Optionen	Bemessungsparameter	Bewehrungsauswahl	Querkraftbewehrung	Querkraftnachweis	Biegeschlankheit	Rissnachweis	
Grenzzus	stand der Gebrauchstaug	lichkeit					
🗹 Begr	enzung der Biegeschlank	cheit					
🗹 in	horizontaler Richtung						
K	-Wert K = 1.0 V						
🗹 Begn	enzung der Rissbreiten						
🗹 М	lindestbewehrung gemäß	Abs. 7.3.2					
\checkmark	früher Zwang (z.B. aus	Hydratation)					
\checkmark] später Zwang (z.B. aus	Stützensenkung)					
🗹 В	erechnung der Rissbreite	n gemäß Abs. 7.3.4					
۲) zul. Rissbreite aus Expo	ositionsklassen					
С) zul. Rissbreite: w.max	c = 0,30 ♠ mm					

Bemessungsparameter

In den Bemessungsparametern werden weitere Vorgaben und Randbedingungen für die folgenden Bemessungen getroffen.

Bemessung Ringbalken

Optionen	Bemessungsparameter	Bewehrun	gsauswahl	Querkraftbewehrung	Querkraftnachweis		Biegeschlankheit	Rissnachweis	
Bemessur	ngsdiagramm		allgemein			Mindestbewehrung			
🔿 Span	nungs-Dehnungs-Linie		Stahl	verfestigung ansetzen		Biegeträger			
Parab	oel-Rechteck-Diagramm		Betor	nzugfestigkeit ansetzen		Rissmoment			
O Bilineare Spannungs-Dehnungs-Linie			🗌 Abzug	g der As-Fläche (Druck:	zone)				
O Spannungsblock			Mindestlastausmitte e0						

Bewehrungsauswahl

Bei der Bewehrungsauswahl werden zunächst die Schnittgrößen gerechnet und das Programm unterbreitet daraufhin einen Bewehrungsvorschlag.

Mit dem Button (Schaltfläche)

"Bewehrungsvorschlag"

kann die vorgeschlagene Bewehrung geändert werden.

B	emessung Ringbalken 🛛 🛛 🗤 weter 🕨											
Dpt	ionen Bemessur	ngsparamete	r Bewehrung	jsauswahl	Querkraftbew	ehrung	Querkraftna	chweis	Biegeschlankheit	Rissnachweis		
Be	wehrungsvorsch	lag 👻 Be	wehrung wä	hlen vo	orh. d1 überne	hmen	Bügel: ma	k.ds = 8	8mm			
	Ort	Seite	erf.As [cm²]	Bewehru	ing	vorh.As [cm²]	s gew.d1 [mm]	vorh.d1 [mm]	¹¹ Ort: Ri	ingbalken F	eld	^
0	Ringbalken Feld	außen	0,91	2Ø12		2,26	44,0	44.0	au	ıßen : 2 Ø 12		
0	Ringbalken Feld	innen	0,54	2 Ø 12		2,26	44,0	44,0	In	inen : 2 Ø 12		
2	Ringbalken St.	außen	0,91	2Ø12		2,26	44,0	44,0		z		
0	Ringbalken St.	innen	0,00	2 Ø 12		2,26	44,0	44.0			Ì	
									y - E	z 21	y 6	
									1	1	\ \	~

Mit dem Button "**Bewehrung wählen**" kann die Bewehrung der aktuellen Tabellenzeile manuell geändert werden. Dabei sind auch Stabstahlbündel und verschiedene Bewehrungslagen möglich.

💾 Be	Bewehrungswahl X												
ц Д 🗙	L≡ × Bewehrung für: Ringbalken Feld - außen												
	Anz.	Ø [mm]	Anz.je Bündel	Lage	vorh.As [cm²]	vorh.As = 2,26 cm ²							
•	2	12	1	1	2,26	erf.As = 0,91 cm ²							
						Differenz = 1,35 cm ²							
					[OK Abbrechen							

Die Bemessung erfolgt mit der automatisch ermittelten statischen Höhe d = h - gew.d1.

Die Schaltfläche "**vorh.d1 übernehmen**" dient dazu, das vorh.d1 (automatisch ermittelt aufgrund der Betondeckung und Bewehrung) zur Berechnung zu verwenden. Der zur Ermittlung des "vorh.d1" verwendete Bügeldurchmesser "max.ds" kann vom Anwender eingestellt werden.

Querkraftbewehrung

Das Programm unterbreitet Ihnen zunächst einen Bewehrungsvorschlag. Die hellen Felder der Tabelle können manuell geändert werden.

Dabei	sind:

- S = Schnittigkeit des Bügels
- ds = Bügeldurchmesser
- sw = Bügelabstand in x-Richtung

В	emess	sung	Ring	gbalk	en					zurück	weite	er 🕨	
Opt	ionen Bemessu	ungsparamet	er Beweh	rungsauswahl	Querkraft	bewehrung	Querkra	ftnachwei	s Biegesch	lankheit	Rissnachv	veis	
Bev	3ewehrungsvorschlag detailiert 👻 Stabbügel 👻												
		cot		statisch			Stabbügel						
	Feld	Theta [-]	min.Asw [cm²/m]	erf.Asw [cm²/m]	erf.Asw [cm²/m]	S [-]	ds [mm]	sw [cm]	vorh.Asw [cm²/m]				
0	Feld 1	3,00	1,58	0,00	1,58	2	8	14,5	6,93				
\bigcirc	Feld 2	3,00	1,58	0,00	1,58	2	8	14,5	6,93				
\bigcirc	Feld 3	3,00	1,58	0,00	1,58	2	8	14,5	6,93				

Mit der Schaltfläche "Bewehrungsvorschlag" kann bei Bedarf ein neuer Bewehrungsvorschlag erzeugt werden.

Die Anzeige (und damit der spätere Ausdruck) kann "detailliert" oder "feldweise" erfolgen. Bei letzterem wird der maximale Wert für jedes Feld angezeigt. Die detaillierte Ausgabe kann nur gewählt werden, wenn unterschiedliche Bemessungswerte im Feld vorliegen.

Weitere Einstellungen sind: "Stabbügel" oder "Mattenbügel" sowie optional Schragstäbe und deren Winkel. Bei Mattenhbügeln empfiehlt es sich mit der Anzeige "feldweise" zu arbeiten.

Querkraftnachweis

Option	en Bemessungsp	barameter B	lewehrungsau	swahl Qu	erkraftbewehn	ung Querkr	aftnachweis	Biegeschla	nkheit Riss	nachweis
	Ort	Ved [kN]	VRdmax [kN]	VRdc [kN]	VedRed [kN]	cot θ [-]	s.maxBu [mm]	s.maxq [mm]	asw,Min [cm²/m]	erf.asv [cm²/m
•	Feld 1	3,38	59,35	16,51	3,38	3,0000	147,00	210,00	1,58	-
	Feld 2	2,78	59,35	16,51	2,78	3,0000	147,00	210,00	1,58	-
	Feld 3	3,38	59,35	16,51	3,38	3,0000	147,00	210,00	1,58	-

Im Bereich Querkraft-nachweis erfolgt die Ausgabe der entsprechenden Bemessungswerte.

Wird die Maus auf einer Spaltenüberschrift kurz still gehalten, so erfolgt die Anzeige der Bedeutung des Wertes in einem Tooltip.

Biegeschlankheit

Beim Nachweis der Biegeschlankheit können die Nachweisformeln I/d <= K * 35 oder I/d <= K² * 150 /l verwendet werden. Letzteres vor allen für Bauteile, die verformungsempfindliche Ausbauteile (z.B. Trennwände) beeinträchtigen können (vgl. NCI zu 7.4.2 (2)).

l	Bei	messung l	Ring	jbalk	en				4	zurück	weiter 🕨
l	Optione	n Bemessungsparameter	Bewehn	ungsauswahl	Querkraftbev	vehrung	Querkraftn	achweis	Biegeschla	ankheit 🛛	Rissnachweis
		Bezeichnung	l [m]	d [m]	Trennwände	Form	el zul. I/d	zul. I/d (NCI)	zul. I/d (EC2)	zul.l [m]	Ausnutzung
	•	Feld 1	3,50	0,166	nein	I/d <	= K * 35	45,50	110,03	7,55	0,463
		Feld 2	3,50	0,166	nein	I/d <	= K * 35	52,50	126,96	8,72	0,402
		Feld 3	3,50	0,166	nein	I/d <	= K * 35	45,50	110,03	7,55	0,463

Rissnachweis

Die Begrenzung der Rissbreiten erfolgt wahlweise durch den Nachweis der Mindestbewehrung nach 7.3.2 und der Berechnung der Rissbreite nach 7.3.4.

Der Nachweis der Mindestbewehrung kann optional für frühen Zwang (z.B. aus Hydratation) und/oder für späten Zwang (z.B. Stützensenkung) berechnet werden.

Beim Nachweis der Rissbreite werden für alle Kombinationen der Gebrauchstauglichkeit die vorhandene Rissbreite aus den Kräften errechnet und mit der zulässigen Rissbreite verglichen.

Bei	m	essung F	Ring	gbalk	ən		4 zurück	weiter 🕨
Optione	n I	Bemessungsparameter	Beweh	rungsauswahl	Querkraftbewehrung	Querkraftnachweis	Biegeschlankheit	Rissnachweis
Details		Nur Überschreitungen	anzeig	en			🥝 max. Ausn	utzung = 0,403
Ort		Nachweis		Gleichung	Zwischenwerte / Deta	ails		Ausnutzung
Ringbal li./re.	0	Riss-Mindestbewehrung (früher Zwang)	9	7.1	Nachweis: As,min/As, As,min= kc*k*fct,eff*Aa	vorh = 1.0 mit 0,91/2 ct/SigmaS	.26	0,403
	0	Riss-Mindestbewehrung (später Zwang)]	7.1	Nachweis: As,min/As, As,min=kc*k*fct,eff*Ad	vorh = 1.0 mit 0,69/2 ct/SigmaS	,26	0,305
Sturz, Fe., au.	0	Riss-Mindestbewehrung (früher Zwang)]	7.1	Nachweis: As,min/As, As,min=kc*k*fct,eff*Ad	vorh = 1.0 mit 0,91/2 ct/SigmaS	.26	0,403
	0	Riss-Mindestbewehrung (später Zwang)]	7.1	Nachweis: As,min/As, As,min=kc*k*fct,eff*Ad	vorh = 1.0 mit 0,69/2 ct/SigmaS	,26	0,305

Bemessung Stütze

Bemessungsparameter

In den Bemessungsparametern werden Vorgaben und Randbedingungen für die folgenden Bemessungen getroffen.

Berneoung otateo

Bemessungsparameter	Bewehrungsauswahl	Querkraftbewehrung	g Querkraftnachweis	
Bemessungsdiagramm		allg	jemein	Mindestbewehrung
O Spannungs-Dehn	ungs-Linie		Stahlverfestigung ansetzen	Stützen
Parabel-Rechteck	-Diagramm		Betonzugfestigkeit ansetzen	Rissmoment
🔘 Bilineare Spannun	gs-Dehnungs-Linie		Abzug der As-Fläche (Druckzone)	
 Spannungsblock 			Mindestlastausmitte e0	
Kriechen und Schwind	len	The	eorie 2.Ordnung	Vorbemessung
🗹 berücksichtigen		St	abunterteilung 3 🜩	Mit Vorbemessung
Erstbelastung	T0 = 28	🗧 Tage(n)		Erhöhung 25 🜩 %
Relative Luftfeuch	te RH = 50	≑ %		
Zementklasse	N	~		

Bewehrungsauswahl

Bei der Bewehrungsauswahl werden zunächst die Schnittgrößen gerechnet und das Programm unterbreitet daraufhin einen Bewehrungsvorschlag.

Mit dem Button (Schaltfläche)

"Bewehrungsvorschlag"

kann die vorgeschlagene Bewehrung geändert werden.

Querkraftbewehrung

Das Programm unterbreitet Ihnen analog zu der Bemessung des Ringbalkens zunächst einen Bewehrungsvorschlag.

Die hellen Felder der Tabelle können manuell geändert werden.

Dabei sind:

S = Schnittigkeit des Bügels

ds = Bügeldurchmesser

sw = Bügelabstand in x-Richtung

Bewehrungsvorschlag • Bewehrung wählen Ausnutzung neu berechnen Bügel: max.ds = 8mm Seite Bewehrung Com [] Seite Bewehrung Ecken 10/12 je Ecke 4.52 0.242 inks/rechts je Seite 0.00 -N Signa N Signa N

Bemessung Stütze

Bemessungsparameter Bewehrungsauswahl Querkraftbewehrung Querkraftnachweis

Bemessungsparameter Bewehrungsauswahl Querkraftbewehrung Querkraftnachweis

Bewehrungsvorschlag	detailiert 👻	Stabbügel 🝷	
---------------------	--------------	-------------	--

				cot		statisch			Stabbügel		
	Feld	X1 [m]	X2 [m]	Theta [-]	min.Asw [cm²/m]	erf.Asw [cm²/m]	erf.Asw [cm²/m]	S [-]	ds [mm]	sw [cm]	vorh.Asw [cm²/m]
	Stütze	0,00	0,13	3,00	0,00	0,00	0,00	2	8	14,0	7,18
\bigcirc		0,13	0,38	3,00	0,00	0,00	0,00	2	8	14,0	7,18
\bigcirc		0,38	0,50	3,00	0,00	0,00	0,00	2	8	14,0	7,18
\bigcirc		0,50	0,63	3,00	0,00	0,00	0,00	2	8	14,0	7,18
\bigcirc		0,63	0,88	3,00	0,00	0,00	0,00	2	8	14,0	7,18
\bigcirc		0,88	1,00	3,00	0,00	0,00	0,00	2	8	14,0	7,18

Mit der Schaltfläche "Bewehrungsvorschlag" kann bei Bedarf ein neuer Bewehrungsvorschlag erzeugt werden.

Querkraftnachweis

Im Bereich Querkraft-nachweis erfolgt, analog zu der Bemessung des Ringbalkens, die Ausgabe der entsprechenden Bemessungswerte.

Schnittgrößen

Die Schnittgrößenausgabe erfolgt getrennt für den Ringbalken und die Stütze. Exemplarisch wird hier die Ausgabe der Ringbalkenschnittgrößen beschrieben.

Kombinationen

Hier werden alle untersuchten Kombinationen für den Grenzzustand der Tragfähigkeit STR - "Versagen oder übermäßige Verformung des Tragwerks" aufgelistet.

Schnittgrößen Ringbalken

Con	nbinationen	Schnittkräft	e Ringbalken Auflagerkräfte (d	esign) Auflagerkräfte (charakt)	
	KNr.	LF	Situation	Kombination	Laststellung
S	TR - Versage	en oder übe	rmäßige Verformungen des	Tragwerks	·
	1	1	Außergewöhnlich	G + A,1	max.Vollast
	2	2	Außergewöhnlich	G + A,1	max.Vollast
	3	3	Ständig und vorübergehend	Gsup	max.Vollast
	4	3	Ständig und vorübergehend	Ginf	max.Vollast
	5	3	Ständig und vorübergehend	Gsup + Q,W	max.Vollast
	6	3	Ständig und vorübergehend	Ginf + Q,W	max.Vollast
	7	3	Ständig und vorübergehend	Gsup + Q,W + (Q,S1)	max.Vollast
	8	3	Ständig und vorübergehend	Ginf + Q,W + (Q,S1)	max.Vollast
	9	3	Ständig und vorübergehend	Gsup + Q,S1	max.Vollast
	10	3	Ständig und vorübergehend	Ginf + Q,S1	max.Vollast
	11	3	Ständig und vorübergehend	Gsun + Q S1 + (Q W)	max Vollast

Schnittkräfte-Ringbalken (design)

Der Verlauf der maximalen Schnittkräfte über die Stablänge wird hier für folgende Untersuchungsstellen angezeigt:

- Auflager
- Zehntelspunkte innerhalb eines Feldes
- Extremalstellen
- Unstetigkeitsstellen (z.B. Lastanfang / ende oder Lasteintrag von Einzellasten)

Schnittarößen Rinabalken

Kombinationen Schnittkräfte Ringbalken Auflagerkräfte (design) Auflagerkräfte (charakt)

📄 nur Endwerte 🛛 Spalten 🝷

x [m]	max.Nx [kN]	min.Nx [kN]	max.Mz [kNm]	min.Mz [kNm]	max.Vy [kN]	min.Vy [kN]	
3,500	70,000	0,000	0,000	0,000	0,000	-2,388	
3,500	0,000	0,000	0,000	0,000	0,000	-2,388	
3,150	70,000	0,000	0,731	0,000	0,000	-1,791	
2,800	70,000	0,000	1,254	0,000	0,000	-1,194	
2,450	70,000	0,000	1,567	0,000	0,000	-0,597	
2,100	70,000	0,000	1,671	0,000	0,000	0,000	
1,750	70,000	0,000	1,567	0,000	0,597	0,000	
1 400	70 000	0 000	1 254	0 000	1 194	0 000	

Auflagerkräfte (design) / Auflagerkräfte (charakteristisch)

Die Auflagerkräfte werden als Bemessungswerte (design) und Weiterleitungswerte (charakteristisch) angezeigt.

Kombinat	tionen	Sch	nittkräfte R	ingbalken	Auflagerkräfte	e (design)	Auflagerkräfte	e (charakt)				
Gehe zu	Lager-N	vr:										
Lager	max./	Az N1	min.Az [kN]	max.Ay	/ min.Ay 1 [kN]	max.A [kN	c min.Ax 1 [kN]					
1	70,0	00		2,38	3 I I I							
2				6,56	6							
3				6,56	6							
4				2,38	3							
Kombinat	tionen	Sch	nittkräfte F	Ringbalken	Auflagerkräft	te <mark>(d</mark> esign)	Auflagerkräf	te (charakt)				
Gehe zu	Lager-1	۷r: [Extren	na aller LF ar	nzeigen						
Lager	r I	LF	Kraft	max.A,1	min.A,1	max.G	min.G	max.Q,S1	min.Q,S1	min.Q,S1 max.Q,W	min.Q,S1 max.Q,W min.Q,W	min.Q,S1 max.Q,W min.Q,W max.Summe
1		1	FX	70,000	0,000							0,000
		2	FX	45,000	0,000							0.000
		3	FY			0,042	0,042	0,028	0,028	0,028 1,540	0,028 1,540 1,540	0,028 1,540 1,540 1,610
2	2	1	FZ							0,000	0,000 0,000	0,000 0,000 0,000

Die Auflagerreaktionen des Ringbalkens werden automatsch als Einwirkung auf die Aussteifungsstütze angesetzt und die Auflagerreaktionen der Stütze in der Lastweiterleitung zur Verfügung gestellt.

Bei den charakteristischen Weiterleitungskräften können optional die Extremwerte (min / max) aller Lastfälle und Lastkategorien angezeigt werden.

<u>Ausgabe</u>

Es können konstruktive Anmerkungen angefügt werden. Das Programm schlägt Texte vor, die frei angepasst werden können.

Konstruktive Anmerkungen

Wenn der Ringbalken nicht durchgehend ausgebildet werden kann, ist die Ringverankerung durch andere Bauteile sicherzustellen.

Der Stoßbereich ist mit Bügeln, Steckbügeln oder Wendeln mit einem Abstand s <= 100 mm zu umfassen.

Die Dachkonstruktion ist mit dem Ringbalken kraftschlüssig (zug- und druckfest) zu verbinden.

Die Eckpunkte sind rahmenartig zu bewehren.

nstr	uktive Anmerkungen Optionen	
lons	truktive Anmerkungen	
2	Wenn der Ringbalken nicht durchgehend ausgebildet werden kann, ist die Ringverankerung durch andere Bauteile sicherzustellen.	$\hat{}$
2	Der Stoßbereich ist mit Bügeln, Steckbügeln oder Wendeln mit einem Abstand s <= 100 mm zu umfassen.	Ŷ
2	Die Dachkonstruktion ist mit dem Ringbalken kraftschlüssig (zug- und druckfest) zu verbinden.	^
		\sim
2 [Die Eckpunkte sind rahmenartig zu bewehren.	~
		\sim
		~

Der Ausgabeumfang (Grafik) kann individuell eingestellt werden.

Ausgabe					
Konstruktive Anmerkungen Optionen					
Allgemein Ringbalken	Allgemein Stütze	Weiterleitung			
Extremales Schnittgrößen-Detailbild	Schnittgrößen nur an Extremalstellen ausgeben	Veiterleitungsdaten			
Bewehrungs-Detailbild	Extremales Schnittgrößen-Detailbild	🗹 lastfallweise			
	Verformungen-Detailbild				
	Bewehrung-Detailbild				
	Kriechzahlen ausgeben				
	🗹 nur maßgebende Kombinationen ausgeben				

Literatur

- [1] DIN EN 1990:2010-12 mit DIN EN 1990/NA:2010-12 [Grundlagen der Tragwerksplanung]
- [2] DIN EN 1991-1-1:2010-12 mit DIN EN 1991-1-1/NA:2010-12 [Lastannahmen]
- [3] DIN EN 1992-1-1:2011-01 mit DIN EN 1992-1-1/NA:2013-04 [Stahlbeton]
- [4] DIN 488-1:2009-08 [Betonstahl Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung]
- [5] DIN EN 206-1:2001-07 [Beton Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität]